Understanding and preventing the spread of both endemic and emerging healthcare-associated infectious diseases throughout hospitals and nursing homes is a national priority. Our work has shown that the many disparate inpatient healthcare facilities in a region can form a complex healthcare ecosystem connected by both direct and indirect patient sharing allowing pathogens in one health care facility to readily spread to other facilities. Our goal is to further develop RHEA (Regional Healthcare Ecosystem Analyst) into a user-friendly software tool that decision makers (e.g., policy makers, funders, product developers and manufacturers, healthcare administrators, infection prevention specialists, researchers, and educators) can readily use to help healthcare ecosystems prevent and control the spread of an endemic pathogen, methicillin- resistant Staphylococcus aureus (MRSA), and an emerging pathogen, carbapenem-resistant Enterobacteriaceae (CRE). This next generation of RHEA will bring multiple innovations by: 1) further elucidating the interconnectedness of the ecosystem and showcasing the value of cooperation among facilities versus the current individual facility approach to infectious disease control, 2) incorporating new healthcare ecosystem responses for endemic MRSA and emerging CRE, 3) continuing our work integrating economic and operational models into a framework of infectious disease epidemiological models, 4) imbuing virtual patients with characteristics linked to MRSA and CRE transmission and outcome risk, 5) building a comprehensive """"""""virtual laboratory"""""""" to help address many existing and future healthcare ecosystem infectious disease questions, and 6) building a user-friendly modeling tool that decision makers can use. The project will continue our team's longstanding modeling work and developing computational tools for decision makers via three specific aims. First, completing Specific Aim 1 will expand RHEA by adding the following capabilities: i) integrated clinical outcome and economic models, ii) more extensive and detailed patient characteristics linked to changes in infection risk and costs, iii) expanded HAI control measures, and iv) stochastic and adaptive disease parameters to represent emerging and evolving diseases. Next, Specific Aim 2 will use our newly expanded RHEA framework to model a sample endemic pathogen, MRSA, and a sample emerging pathogen, CRE to identify optimal control strategies even when pathogen characteristics are evolving. Finally, Specific Aim 3 will involve developing a user-friendly interface for RHEA and deploying it as a healthcare ecosystem computational modeling tool that various stakeholders (e.g., policy makers, healthcare administrators, infection control specialists, funders, and product manufacturers) can readily use to make decisions regarding the control of healthcare-associated infections.

Public Health Relevance

Understanding and preventing the spread of healthcare-associated infectious diseases throughout hospitals and nursing homes is a national priority. Simulation models can serve as virtual laboratories to help identify best practice solutions for containing common [such as methicillin-resistant Staphylococcus aureus (MRSA)] and emerging [e.g., carbapenem-resistant Enterobacteriaceae (CRE)] causes of healthcare associated infections (HAIs). Our goal is to develop our software RHEA (Regional Healthcare Ecosystem Analyst) into a computational modeling tool that can be used directly by decision makers to identify, develop, and evaluate strategies and interventions to reduce HAIs across a large geographic region.

Agency
National Institute of Health (NIH)
Institute
Agency for Healthcare Research and Quality (AHRQ)
Type
Research Project (R01)
Project #
1R01HS023317-01
Application #
8749421
Study Section
(HSQR)
Program Officer
Gray, Darryl T
Project Start
2014-09-01
Project End
2019-08-31
Budget Start
2014-09-01
Budget End
2019-08-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wedlock, Patrick T; Mitgang, Elizabeth A; Siegmund, Sheryl S et al. (2018) Dual-chamber injection device for measles-rubella vaccine: The potential impact of introducing varying sizes of the devices in 3 countries. Vaccine 36:5879-5885
Bartsch, Sarah M; Taitel, Michael S; DePasse, Jay V et al. (2018) Epidemiologic and economic impact of pharmacies as vaccination locations during an influenza epidemic. Vaccine 36:7054-7063
Bartsch, Sarah M; Asti, Lindsey; Nyathi, Sindiso et al. (2018) Estimated Cost to a Restaurant of a Foodborne Illness Outbreak. Public Health Rep 133:274-286
Lee, Bruce Y; Bartsch, Sarah M; Mui, Yeeli et al. (2017) A systems approach to obesity. Nutr Rev 75:94-106
Lee, Bruce Y; Mueller, Leslie E; Tilchin, Carla G (2017) A systems approach to vaccine decision making. Vaccine 35 Suppl 1:A36-A42
Lee, Bruce Y; Haidari, Leila A (2017) The importance of vaccine supply chains to everyone in the vaccine world. Vaccine 35:4475-4479
Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick et al. (2017) Map of different vaccine supply chain efficiency measures. Vaccine 35:199-200
Lee, Bruce Y; Adam, Atif; Zenkov, Eli et al. (2017) Modeling The Economic And Health Impact Of Increasing Children's Physical Activity In The United States. Health Aff (Millwood) 36:902-908
Lee, Bruce Y; Bartsch, Sarah M (2017) How to determine if a model is right for neglected tropical disease decision making. PLoS Negl Trop Dis 11:e0005457
Powell-Wiley, Tiffany M; Wong, Michelle S; Adu-Brimpong, Joel et al. (2017) Simulating the Impact of Crime on African American Women's Physical Activity and Obesity. Obesity (Silver Spring) 25:2149-2155

Showing the most recent 10 out of 35 publications