Susceptibility to sporadic forms of cancer is determined by numerous genetic factors that interact in a nonlinear manner in the context of an individual's age and environmental exposure. This complex genetic architecture has important implications for the use of genome-wide association studies for identifying susceptibility genes. The assumption of a simple architecture supports a strategy of testing each single- nucleotide polymorphism (SNP) individually using traditional univariate statistics followed by a correction for multiple tests. However, a complex genetic architecture that is characteristic of most types of cancer requires analytical methods that specifically model combinations of SNPs and environmental exposures. While new and novel methods are available for modeling interactions, exhaustive testing of all combinations of SNPs is not feasible on a genome-wide scale because the number of comparisons is effectively infinite. Thus, it is critical that we develop intelligent strategies for selecting subsets of SNPs prior to combinatorial modeling. Our objective is to develop a research strategy for the detection, characterization, and interpretation of gene-gene and gene-environment interactions in a genome-wide association study of bladder cancer susceptibility. To accomplish this objective, we will develop and evaluate modifications and extensions to the ReliefF algorithm for selecting or filtering subsets of single-nucleotide polymorphisms (SNPs) for multifactor dimensionality reduction. (MDR) analysis of gene-gene and gene-environment interactions (AIM 1). We will develop and evaluate a stochastic wrapper or search strategy for MDR analysis of interactions that utilizes ReliefF values as a heuristic (AIM 2). The filter approach will be statisyically compared to the wrapper approach. The best ReliefF strategies will be provided as part of our open-source MDR software package (AIM 3). Finally, we will apply the best ReliefF-MDR analysis strategy to the detection, characterization, and interpretation of gene-gene and gene-environment interactions in a large genome-wide association study of bladder cancer susceptibility (AIM 4). The methods developed here will be applied to nearly 1500 haplotype tagging SNPs (tagSNPs) across approximately 300 cancer susceptibility genes measured in 542 subjects with bladder cancer and 745 healthy controls ascertained as part of a large epidemiological study from the state of New Hampshire.

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Research Project (R01)
Project #
3R01LM009012-03S2
Application #
7922769
Study Section
Biomedical Library and Informatics Review Committee (BLR)
Program Officer
Ye, Jane
Project Start
2009-09-01
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2011-08-31
Support Year
3
Fiscal Year
2009
Total Cost
$98,339
Indirect Cost
Name
Dartmouth College
Department
Genetics
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Piette, Elizabeth R; Moore, Jason H (2018) Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proc 12:59
Urbanowicz, Ryan J; Olson, Randal S; Schmitt, Peter et al. (2018) Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform 85:168-188
Urbanowicz, Ryan J; Meeker, Melissa; La Cava, William et al. (2018) Relief-based feature selection: Introduction and review. J Biomed Inform 85:189-203
Hall, Molly A; Wallace, John; Lucas, Anastasia et al. (2017) PLATO software provides analytic framework for investigating complexity beyond genome-wide association studies. Nat Commun 8:1167
Graham, Britney E; Darabos, Christian; Huang, Minjun et al. (2017) Evolutionarily derived networks to inform disease pathways. Genet Epidemiol 41:866-875
Huang, Jing; Liu, Yulun; Vitale, Steve et al. (2017) On meta- and mega-analyses for gene-environment interactions. Genet Epidemiol 41:876-886
Wang, Lu; Chen, Yong; Zhu, Hongjian (2017) Implementing Optimal Allocation in Clinical Trials with Multiple Endpoints. J Stat Plan Inference 182:88-99
Hong, Chuan; Ning, Yang; Wei, Peng et al. (2017) A semiparametric model for vQTL mapping. Biometrics 73:571-581
Beaulieu-Jones, Brett K; Moore, Jason H (2017) MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING DEEPLY LEARNED AUTOENCODERS. Pac Symp Biocomput 22:207-218
Hong, Chuan; Ning, Yang; Wang, Shuang et al. (2017) PLEMT: A NOVEL PSEUDOLIKELIHOOD BASED EM TEST FOR HOMOGENEITY IN GENERALIZED EXPONENTIAL TILT MIXTURE MODELS. J Am Stat Assoc 112:1393-1404

Showing the most recent 10 out of 145 publications