More than a million people per year die by suicide worldwide, more than all homicides and deaths in all wars, making suicide a global health problem. Many people with Major Depressive Disorder (MDD), a serious disorder with an enormous economic burden, die by suicide. In suicides, we find more tryptophan hydroxylase (TPH2), the serotonin (5-HT) biosynthetic enzyme, as well as more TPH+ neurons and hypothesize this is compensation for deficient 5-HT neurotransmission. We now have a group of unmedicated MDD nonsuicides to allow us to determine whether the changes we find are associated with the diathesis of suicide or with MDD. We propose a study of matched triplets (n=15) of an MDD suicide, an MDD nonsuicide and a nonpsychiatric nonsuicide control, all unmedicated and characterized psychiatrically.
We aim to elucidate molecular mechanisms involved in regulating TPH2 expression and function in the dorsal raphe nucleus (DRN) and in the prefrontal cortex (PFC) and separate the effects of MDD from suicide. We hypothesize that the paradox of low 5-HT neurotransmission in the PFC and high TPH2 in the DRN in suicides is a consequence of dysregulation of cAMP/PKA dependent and GSK3beta pathways regulating TPH2 phosphorylation in the DRN and signaling in the PFC.
In Specific Aim 1, we will use in situ hybridization and immunoautoradiography to measure the amount of TPH2 mRNA and protein in the DRN. We hypothesize that MDD suicides will over-express TPH2 compared to the nonsuicide MDD and control groups. Alternatively, TPH2 expression in suicides may have anatomically restricted changes compared to MDD non-suicides, similar to our previous findings of widespread 5-HT transporter reductions in MDD but restricted changes in suicide.
In Specific Aim 2, Western blots will be used to determine the levels of TPH2 and phosphorylated-TPH2 (p-TPH2) as well as key kinases involved in TPH2 regulation in both the brainstem and the dorsolateral and ventral PFC. We hypothesize that PKA expression will be lower in suicides, resulting in less phosphorylation of TPH2 and that suicides will have higher GSK3beta expression associated with the lower TPH2 function and higher AKT and p-AKT to inactivate GSK3beta. This defect will be widespread in the DRN in MDD, but greater in magnitude and with a different anatomy in MDD suicides. Alternatively, PKA expression may be elevated in suicides in the DRN and PFC in association with autoreceptor upregulatory changes.
In Specific Aim 3, HPLC will be used to measure 5-HT, tryptophan and 5-HIAA in the brainstem and the PFC. We hypothesize that suicides will have more 5-HT and 5-HIAA compared to controls or MDD nonsuicides. Alternatively, 5-HT and 5-HIAA may be less in MDD. This will suggest that the serotonergic deficiency associated with suicide is different from MDD and lies, not in 5- HT synthesis, but in downstream processes such as reduced transmitter release in the PFC. Thus, the serotonergic deficiency profile in suicide will be distinct from that in MDD.

Public Health Relevance

We seek to examine alterations in the signaling pathways that regulate the serotonin biosynthetic enzyme, tryptophan hydroxylase (TPH2), in Major Depressive Disorder and in suicide. Using postmortem brainstem and prefrontal cortical tissue, several regulators of TPH2 and serotonin synthesis will be systematically studied. This work will provide a better understanding of the regulation of serotonin synthesis, separate the alterations associated with Major Depressive Disorder from those related to suicide and in so doing raise the possibility of identifying novel therapeutic approaches for suicide prevention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH040210-29
Application #
8895146
Study Section
Pathophysiological Basis of Mental Disorders and Addictions Study Section (PMDA)
Program Officer
Meinecke, Douglas L
Project Start
1990-02-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
29
Fiscal Year
2015
Total Cost
Indirect Cost
Name
New York State Psychiatric Institute
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Boldrini, Maura; Fulmore, Camille A; Tartt, Alexandria N et al. (2018) Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 22:589-599.e5
Youssef, Mariam M; Underwood, Mark D; Huang, Yung-Yu et al. (2018) Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol 21:528-538
Fitzgerald, Megan L; Kassir, Suham A; Underwood, Mark D et al. (2017) Dysregulation of Striatal Dopamine Receptor Binding in Suicide. Neuropsychopharmacology 42:974-982
Pantazatos, S P; Huang, Y-Y; Rosoklija, G B et al. (2017) Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry 22:760-773
Donaldson, Z R; le Francois, B; Santos, T L et al. (2016) The functional serotonin 1a receptor promoter polymorphism, rs6295, is associated with psychiatric illness and differences in transcription. Transl Psychiatry 6:e746
Kumar, J S Dileep; Underwood, Mark D; Simpson, Norman R et al. (2016) Autoradiographic Evaluation of [(18)F]FECUMI-101, a High Affinity 5-HT1AR Ligand in Human Brain. ACS Med Chem Lett 7:482-6
Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P et al. (2016) GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER. Depress Anxiety 33:531-540
Yin, Honglei; Pantazatos, Spiro P; Galfalvy, Hanga et al. (2016) A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 171B:414-426
Bach, Helene; Arango, Victoria; Kassir, Suham A et al. (2016) Cigarette Smoking and Tryptophan Hydroxylase 2 mRNA in the Dorsal Raphe Nucleus in Suicides. Arch Suicide Res 20:451-62
Pantazatos, Spiro P; Andrews, Stuart J; Dunning-Broadbent, Jane et al. (2015) Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide. Neurobiol Dis 79:123-34

Showing the most recent 10 out of 95 publications