The cerebellum and its associated brainstem circuitry are required for learning and retaining simple conditioned reflexes of striated muscles, and the hippocampus is required to acquire and temporarily store stimulus associations for more complicated conditioning paradigms, such as trace conditioning. The overall goals of this proposal are to continue to characterize the neural substrates of these intermediate events in the hippocampus and other forebrain regions and, additionally, to begin to localize the brain regions underlying permanent storage of memory using hippocampally-dependent trace eyeblink conditioning in the rabbit. Our analysis of this circuit should lead to a more thorough understanding of the interrelationships among the cerebellum, hippocampus, and hippocampally-related forebrain structures, including the caudomedial prefrontal cortex (cmPFC), cortical association areas and the basal ganglia.
Our aims will test a common hypothesis that the """"""""memory trace"""""""" is transferred from the hippocampus to the cortex during acquisition and consolidation of learned responses. Our recent single neuron recordings indicate that the hippocampus and caudomedial prefrontal cortex mediate only a temporary role in learning the hippocampus-dependent trace eyeblink conditioned response. We propose that an increased excitability of association cortex neurons provides a necessary facilitation of pontine / mossy fiber inputs to the cerebellum, and that the basal ganglia provide necessary feedback from the cerebellum to the forebrain required to establish the neocortical changes. Single neuron activity will be recorded from large numbers of cells in rabbits during learning with multiple, independently moveable tetrodes to characterize activity at several key sites on the developing conditioned reflex arc. Inactivation will be done with reversible lesions, combined with single neuron recording and behavioral measurements, to evaluate the role of some regions. Our experimental program will begin testing the hypothesis that memories are stored in neocortical regions in a process dependent upon the engagement of the hippocampus and basal ganglia earlier in the learning process. Our data will have considerable relevance to better understanding the processes by which learning occurs in mammalian brain, including in human brain as we and others have shown important parallels in the processes by which humans and experimental animals acquire eyeblink conditioning. The results of these experiments will also be useful in the design of more appropriate treatments for learning deficits in young and aging individuals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH047340-11
Application #
6760962
Study Section
Integrative, Functional and Cognitive Neuroscience 8 (IFCN)
Program Officer
Anderson, Kathleen C
Project Start
1992-05-01
Project End
2007-04-30
Budget Start
2004-07-01
Budget End
2005-04-30
Support Year
11
Fiscal Year
2004
Total Cost
$232,289
Indirect Cost
Name
Northwestern University at Chicago
Department
Physiology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Weiss, Craig; Procissi, Daniel; Power, John M et al. (2018) The rabbit as a behavioral model system for magnetic resonance imaging. J Neurosci Methods 300:196-205
Moskal, Joseph R; Burgdorf, Jeffrey S; Stanton, Patric K et al. (2017) The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant. Curr Neuropharmacol 15:47-56
Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel et al. (2016) Intrinsic connectivity of neural networks in the awake rabbit. Neuroimage 129:260-267
Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel et al. (2016) Pretrial functional connectivity differentiates behavioral outcomes during trace eyeblink conditioning in the rabbit. Learn Mem 23:161-8
Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel et al. (2016) Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation. Neuroimage 126:72-80
Burgdorf, Jeffrey; Kroes, Roger A; Zhang, Xiao-lei et al. (2015) Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: Characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats. Behav Brain Res 294:177-85
Burgdorf, J; Zhang, X-L; Weiss, C et al. (2015) The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 308:202-11
Hattori, Shoai; Chen, Lillian; Weiss, Craig et al. (2015) Robust hippocampal responsivity during retrieval of consolidated associative memory. Hippocampus 25:655-69
Weiss, Craig; Disterhoft, John F (2015) The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain-cerebellar interactions. Behav Neurosci 129:512-22
Weiss, Craig; Disterhoft, John F (2015) Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 6:142

Showing the most recent 10 out of 59 publications