The overarching aim of this grant from its inception in 1990 has been to use animal models to gain a better understanding of neuronal systems that may be dysfunctional in schizophrenia. The neuronal networks that we have focused on have included dopamine innervated regions, and the glutamatergic regulation of these regions. While studies supported by this grant and work by others have provided a number of potential novel targets for treating schizophrenia, the enthusiasm that we will discover treatments that will 'cure' or even provide far more superior efficacy than current antipsychotic medications has been dampened by our increased appreciation of the complexity of genetic and non-genetic causes of schizophrenia. It is increasingly evident that, by the time the illness presents itself, he damage (the 'miswiring' resulting in 'functional lesions') may be irreversible. Thus, one of our best chances for treating this illness is to prevent its progression. Specifically, the clinical fild has advanced toward identifying individuals at the prodromal phase of the illness who are at high risk for psychosis, the great majority of whom are adolescents or young adults, with the hope that appropriate interventions in these individuals will prevent transition to the psychotic illness. The efforts to design safe and mechanistically driven interventions, however, are hampered seriously by our poor knowledge of the neurobiology of the adolescent brain. The overarching aim of this application is to gain a better functional understanding of neuronal systems that may be relevant to adolescent vulnerability to develop schizophrenia. The experimental design is guided by complementary clinical findings in individuals at-risk (AR) for schizophrenia and our own basic findings in adolescent rats. Human imaging findings in AR individuals report that the onset of psychosis is preceded by abnormal presynaptic dopamine activity in the associational as opposed to ventral regions of striatum, and that this measure correlates with altered prefrontal cortex (PFC) function. Our animal studies identify key differences in presynaptic dopamine activity in the dorsal striatum, and in the processing of salient information in the dorsal striatum and PFC of adolescent compared to adult rats. Collectively, these parallel findings suggest that the disruption of cortical networks that regulat dopamine projections to cortical and dorsal regions of the striatum may be relevant to increased vulnerability to transition to psychosis. Given this, we propose the working hypothesis that midbrain dopamine systems, and their interactions with striatal and PFC areas, are regulated differently in adolescents compared to adults. We address this hypothesis at multiple levels of analysis by using state-of-the-art methods to compare local and global functions of dopamine neurons in adolescents and adult rats. Regardless of the outcome, the data generated by the proposed experiments will inform us about brain circuits that subserve affective and cognitive behaviors in adolescents, and will provide a platform for future investigations toward interventionstrategies in AR individuals.

Public Health Relevance

The symptomatic onset of schizophrenia typically is during late adolescence and early adulthood. A better understanding of neurobiology of adolescent brain is fundamental to our understanding of the etiology of the disorder and of the design of intervention strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
7R01MH048404-27
Application #
9446072
Study Section
Pathophysiological Basis of Mental Disorders and Addictions Study Section (PMDA)
Program Officer
Winsky, Lois M
Project Start
2017-04-05
Project End
2018-06-30
Budget Start
2017-04-05
Budget End
2017-06-30
Support Year
27
Fiscal Year
2016
Total Cost
$254,129
Indirect Cost
$89,110
Name
Oregon Health and Science University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Lohani, Sweyta; Martig, Adria K; Underhill, Suzanne M et al. (2018) Burst activation of dopamine neurons produces prolonged post-burst availability of actively released dopamine. Neuropsychopharmacology 43:2083-2092
Simon, Nicholas W; Moghaddam, Bita (2017) Methylphenidate has nonlinear dose effects on cued response inhibition in adults but not adolescents. Brain Res 1654:171-176
Bueno-Junior, Lezio S; Simon, Nicholas W; Wegener, Meredyth A et al. (2017) Repeated Nicotine Strengthens Gamma Oscillations in the Prefrontal Cortex and Improves Visual Attention. Neuropsychopharmacology 42:1590-1598
Lohani, S; Poplawsky, A J; Kim, S-G et al. (2017) Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol Psychiatry 22:585-594
Kim, Yunbok; Simon, Nicholas W; Wood, Jesse et al. (2016) Reward Anticipation Is Encoded Differently by Adolescent Ventral Tegmental Area Neurons. Biol Psychiatry 79:878-86
Park, Junchol; Wood, Jesse; Bondi, Corina et al. (2016) Anxiety Evokes Hypofrontality and Disrupts Rule-Relevant Encoding by Dorsomedial Prefrontal Cortex Neurons. J Neurosci 36:3322-35
Simon, Nicholas W; Moghaddam, Bita (2015) Neural processing of reward in adolescent rodents. Dev Cogn Neurosci 11:145-54
Moghaddam, Bita; Wood, Jesse (2014) Teamwork matters: coordinated neuronal activity in brain systems relevant to psychiatric disorders. JAMA Psychiatry 71:197-9
Silverstein, Steven M; Moghaddam, Bita; Wykes, Til (2014) Research strategies and priorities to improve the lives of people with schizophrenia: executive summary of the Ernst Strüngmann Forum on schizophrenia. Schizophr Bull 40:259-65
Totah, Nelson K B; Kim, Yunbok; Moghaddam, Bita (2013) Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection. J Neurophysiol 110:75-85

Showing the most recent 10 out of 18 publications