Schizophrenia (Sz) is associated with deficits in cognitive function that represent a core feature of the disorder. Traditional dopaminergic models stress dysfunction within higher order associational brain regions. In contrast, more recent glutamatergic models predict widespread dysfunction across cortical regions, including primary and secondary sensory cortices. Over the past project period, we have documented deficits in early auditory and visual processing in Sz using behavioral-, event-related potential (ERP) and MRI-based approaches, supporting distributed models of cortical dysfunction in Sz. In addition, we have demonstrated significant contributions of early sensory processing deficits to higher order cortical impairments. These studies have permitted us to formulate specific hypotheses concerning neural mechanisms underlying sensory/cognitive dysfunction in Sz, as well as novel approaches to potential treatment development. In the auditory system, early deficits include impaired ability to match tones following brief delay, as well as impaired generation of mismatch negativity (MMN), auditory N1 and auditory steady-state (ASSR) responses. Furthermore, deficits in low level auditory processing contribute to higher order dysfunction, such as impaired ability to interpret prosody, leading to deficits in auditory emotion recognition (AER), which, in turn, contributes to impaired social function. In the visual system, deficits include reduced contrast sensitivity particularly to low contrast, low spatial frequency (LSF) stimuli that preferentially engage the magnocellular visual system, as well as impaired generation of steady state visual evoked potentials (ssVEP), visual P1, and impaired fMRI activation of magnocellular-recipient regions of primary visual cortex. Low level deficits contribute to higher order impairments including in perceptual closure and face emotion recognition (FER). Both auditory and visual deficits contribute to progressive impairment in reading ability, which may be an early marker of Sz. Finally, both auditory and visual deficits correlate with impaired structura and functional connectivity within low level sensory regions, as assessed using diffusion tensor (DTI) and resting state (rsfMRI) imaging. To date, neurophysiological abnormalities have been assessed mainly using time-domain approaches. Over the upcoming period, we will incorporate advanced frequency-domain and oscillatory hierarchical approaches as well, which provide separate indices of spontaneous and event-related dynamics of neuronal oscillations. Visual ERP will be combined with eye tracking to permit evaluation of naturalistic scene processing. We will also explore patterns of dysfunction within both prodromal and first episode (FE) cohorts using paradigms validated during our prior grant cycle. Finally, we will incorporate novel brain stimulation approaches including Transcranial Magnetic Stimulation (rTMS) applied over sensory vs. frontal cortical regions to disrupt local processing in healthy controls as a model for Sz;and transcranial Direct Current Stimulation (tDCS) applied over sensory or frontal brain regions as a prelude to plasticity-based stimulatory intervention in Sz.

Public Health Relevance

Schizophrenia is a major neuropsychiatric disorder and leading cause of disability worldwide. Cognitive deficits are a core feature of schizophrenia and a major contributor to illness-related disability. This project examines sensory contributions to cognitive impairments in schizophrenia. Over previous grant cycles, we have demonstrated that individuals with schizophrenia show severe impairments in basic auditory and visual processes, such as the ability to match tones following brief delay, or to see pictures presented at low contrast. These deficits make it difficult for patients to interpret emotion based on tone of voice or facial expression, and contribute to severe reading dysfunction in a subset of patients. Studies during the next grant period will investigate the causes of sensory dysfunction using EEG (brain wave) based approaches as well as functional magnetic resonance imaging. In addition, we will evaluate other ways by which sensory deficits might lead to impaired function. Finally, we will evaluate the use of newly developed brain stimulation approaches to determine the degree to which they might be beneficial in reversing sensory-level abnormalities. If this approach is successful, it may open the way for novel, brain stimulation-based approaches in schizophrenia.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Meinecke, Douglas L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Nathan Kline Institute for Psychiatric Research
United States
Zip Code
Avissar, Michael; Xie, Shanghong; Vail, Blair et al. (2018) Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 191:25-34
Javitt, Daniel C; Lee, Migyung; Kantrowitz, Joshua T et al. (2018) Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 191:51-60
Pobric, Gorana; Hulleman, Johan; Lavidor, Michal et al. (2018) Seeing the World as it is: Mimicking Veridical Motion Perception in Schizophrenia Using Non-invasive Brain Stimulation in Healthy Participants. Brain Topogr 31:827-837
Corcoran, Cheryl M; Stoops, Anastasia; Lee, Migyung et al. (2018) Developmental trajectory of mismatch negativity and visual event-related potentials in healthy controls: Implications for neurodevelopmental vs. neurodegenerative models of schizophrenia. Schizophr Res 191:101-108
Martínez, Antígona; Gaspar, Pablo A; Hillyard, Steven A et al. (2018) Impaired Motion Processing in Schizophrenia and the Attenuated Psychosis Syndrome: Etiological and Clinical Implications. Am J Psychiatry :appiajp201818010072
Lee, Migyung; Balla, Andrea; Sershen, Henry et al. (2018) Rodent Mismatch Negativity/theta Neuro-Oscillatory Response as a Translational Neurophysiological Biomarker for N-Methyl-D-Aspartate Receptor-Based New Treatment Development in Schizophrenia. Neuropsychopharmacology 43:571-582
Lee, M; Sehatpour, P; Hoptman, M J et al. (2017) Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 22:1585-1593
Choi, Jimmy; Corcoran, Cheryl M; Fiszdon, Joanna M et al. (2017) Pupillometer-based neurofeedback cognitive training to improve processing speed and social functioning in individuals at clinical high risk for psychosis. Psychiatr Rehabil J 40:33-42
Javitt, Daniel C (2016) Biotypes in Psychosis: Has the RDoC Era Arrived? Am J Psychiatry 173:313-4
Trémeau, Fabien; Antonius, Daniel; Malaspina, Dolores et al. (2016) Loneliness in schizophrenia and its possible correlates. An exploratory study. Psychiatry Res 246:211-217

Showing the most recent 10 out of 65 publications