Seasonal growth and shrinkage of brain regions involved in control of birdsong provides a striking and unique opportunity to investigate the mechanisms regulating neuronal turnover associated with natural variation in steroids, and the functional consequences of this neural plasticity for sensorimotor learning.
The aims i n this proposal address fundamental issues of neural plasticity, and neuronal turnover in particular, in adult brains. These include the role of steroid hormones and neurotrophins in neuronal birth and death (Aims 1-2), the role of neurotrophins in neuronal activity that influences neurogenesis (Aim 3), and the coordinated expression of families of genes important in regulating functionally related processes of neurogenesis, neuronal protection, death, and activity (Aim 4). The birdsong system excels as a model for studies of neural plasticity;it is a well-defined and tractable neural circuit that shows extreme seasonal plasticity and regulates song, a learned sensorimotor behavior that is easily analyzed. This research will advance the field by 1) elucidating the mechanisms underlying the functional linkage between neuronal birth and death in adult brains (Aims 1,2);2) providing the first evidence that neurotrophins influence the electrophysiology of neurons in the song system (Aim 3);3) moving this field beyond the level of single gene analysis by opening up analysis of microRNA expression as a molecular mechanism for coordinating the expression of gene families that regulate the component cellular processes of adult neuroplasticity (Aim 4).

Public Health Relevance

Steroid hormones have potential for use as neuroprotective agents in the treatment of stroke and a variety of neurodegenerative and mental health disorders. They are also of increasing concern as drugs of abuse. This work will examine the fundamental mechanisms by which these potent hormones influence neuronal birth, death, and gene expression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH053032-19
Application #
8605218
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Glanzman, Dennis L
Project Start
1995-04-01
Project End
2016-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
19
Fiscal Year
2014
Total Cost
$391,573
Indirect Cost
$131,737
Name
University of Washington
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Larson, Tracy A; Thatra, Nivretta M; Hou, Daren et al. (2018) Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol :
Cohen, Rachel E; Macedo-Lima, Matheus; Miller, Kimberly E et al. (2016) Adult Neurogenesis Leads to the Functional Reconstruction of a Telencephalic Neural Circuit. J Neurosci 36:8947-56
Brenowitz, Eliot A; Remage-Healey, Luke (2016) It takes a seasoned bird to be a good listener: communication between the sexes. Curr Opin Neurobiol 38:12-7
Caras, Melissa L; Sen, Kamal; Rubel, Edwin W et al. (2015) Seasonal plasticity of precise spike timing in the avian auditory system. J Neurosci 35:3431-45
Brenowitz, Eliot A (2015) Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity. Front Neuroendocrinol 37:119-28
Small, Thomas W; Brenowitz, Eliot A; Wojtenek, Winfried et al. (2015) Testosterone Mediates Seasonal Growth of the Song Control Nuclei in a Tropical Bird. Brain Behav Evol 86:110-21
Brenowitz, Eliot A; Zakon, Harold H (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 38:273-8
Larson, Tracy A; Lent, Karin L; Bammler, Theo K et al. (2015) Network analysis of microRNA and mRNA seasonal dynamics in a highly plastic sensorimotor neural circuit. BMC Genomics 16:905
Brenowitz, Eliot A; Larson, Tracy A (2015) Neurogenesis in the adult avian song-control system. Cold Spring Harb Perspect Biol 7:
Larson, Tracy A; Thatra, Nivretta M; Lee, Brian H et al. (2014) Reactive neurogenesis in response to naturally occurring apoptosis in an adult brain. J Neurosci 34:13066-76

Showing the most recent 10 out of 57 publications