NMDA receptors are involved in several critical functions of the CNS such as cellular mechanisms of learning, pain perception, motor patterns, experience-dependent synapse formation, and others. These receptors are also involved in epilepsy, narcotic adaptation, and neuronal cell death following ischemia, head and spinal cord injury, and HIV infection. Presently the roles that the various NMDA receptor subtypes play in these diverse actions are unknown. We propose to develop subtype-selective antagonists to facilitate the study of NMDA receptor subtypes in normal and abnormal CNS function. We propose to develop a new category of NMDA receptor antagonist- """"""""cleft-binding"""""""" antagonists. Our previous antagonist development studies, as well as our molecular modeling studies, have lead us to the conclusion that antagonists of greater subtype-selectivity will require large side groups that can interact with the unique amino acid residues that lay outside the primary antagonist binding site. Such antagonists have side-groups that project further out into the cleft formed between the two major lobes (S1 and S2) that comprise the glutamate binding domain of the NMDA receptor. Thus, we are targeting antagonists that are capable of interacting with the more variable regions of the receptor. The objectives of this project are to: 1) Synthesize and evaluate novel NMDA receptor antagonists that define the structural requirements for binding within the cleft domain of the different NR2 subunits. 2) Test our recently developed molecular models of NR2B and NR2C glutamate binding sites by making point mutations and one chimera that are predicted to have specific alterations in antagonist selectivity. 3) The results from novel antagonists (Aim 1) and point mutations (Aim 2) will be used to test, and if necessary, refine our molecular models of NR2B and NR2C glutamate binding sites. We will then construct NR2A and NR2D molecular models. We will then use the refined models, as well as the structure-activity information, to generate new subtype-selective cleft-binding antagonists. This process would include using automated, computer-assisted routines, as well as, visually-aided design. Given the high homology in secondary, but not primary, structure for the various glutamate receptors, we feel this unexplored approach to antagonist design has significant implications for developing subtype selective antagonists within each of the glutamate receptor families.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
1R01MH060252-01A1
Application #
6286759
Study Section
Special Emphasis Panel (ZRG1-MDCN-5 (01))
Program Officer
Brady, Linda S
Project Start
2001-04-06
Project End
2005-03-31
Budget Start
2001-04-06
Budget End
2002-03-31
Support Year
1
Fiscal Year
2001
Total Cost
$291,500
Indirect Cost
Name
University of Nebraska Medical Center
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Burnell, Erica S; Irvine, Mark; Fang, Guangyu et al. (2018) Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J Med Chem :
Alsaad, Hassan A; DeKorver, Nicholas W; Mao, Zhihao et al. (2018) In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons. Neurochem Res :
France, Grace; Fernández-Fernández, Diego; Burnell, Erica S et al. (2017) Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology 112:76-83
Chopra, Divyan A; Sapkota, Kiran; Irvine, Mark W et al. (2017) A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors. Sci Rep 7:6933
Sapkota, Kiran; Irvine, Mark W; Fang, Guangyu et al. (2017) Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology 125:64-79
Sapkota, Kiran; Mao, Zhihao; Synowicki, Paul et al. (2016) GluN2D N-Methyl-d-Aspartate Receptor Subunit Contribution to the Stimulation of Brain Activity and Gamma Oscillations by Ketamine: Implications for Schizophrenia. J Pharmacol Exp Ther 356:702-11
Wallis, James L; Irvine, Mark W; Jane, David E et al. (2015) An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo. Hippocampus 25:1407-17
Chopra, Divyan A; Monaghan, Daniel T; Dravid, Shashank M (2015) Bidirectional Effect of Pregnenolone Sulfate on GluN1/GluN2A N-Methyl-D-Aspartate Receptor Gating Depending on Extracellular Calcium and Intracellular Milieu. Mol Pharmacol 88:650-9
Irvine, Mark W; Fang, Guangyu; Eaves, Richard et al. (2015) Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known NMDA Receptor Allosteric Modulators. Synthesis (Stuttg) 47:1593-1610
Volianskis, Arturas; France, Grace; Jensen, Morten S et al. (2015) Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res 1621:5-16

Showing the most recent 10 out of 28 publications