Selective activators of the mGluR5 subtype metabotropic glutamate receptor (mGluR) have been proposed as a novel approach for treatment of schizophrenia. Unfortunately, previous efforts to develop highly selective mGluR5 agonists have failed because of the high conservation of the orthosteric glutamate binding site across all mGluR subtypes. We have now developed highly selective activators of mGluR5 that have no activity at any other mGluR subtype. The key to achieving this unprecedented selectivity was to target allosteric sites on mGluR5 rather than developing traditional agonists acting at the highly conserved glutamate binding site. The prototypical mGluR5 positive allosteric modulators (PAMs) do not activate mGluR5 directly but potentiate the response of the receptor to glutamate. These mGluR5 PAMs potentiate mGluR5-mediated responses in multiple neuronal populations and our preliminary studies suggest that mGluR5 PAMs have activity in rodent models that are used to predict antipsychotic efficacy. In addition, we have shown that mGluR5 PAMs enhance hippocampal synaptic plasticity and our preliminary studies reveal that mGluR5 PAMs enhance at least one form of hippocampal-dependent learning in rodents. These studies suggest that mGluR5 PAMs may provide efficacy in treatment of both positive symptoms and cognitive disturbances in schizophrenia patients. We have now discovered a range of structurally and functionally distinct mGluR5 PAMs that have excellent pharmacokinetic profiles and brain penetration for use in behavioral studies. In addition, we have developed mGluR5 PAMs that have distinct modes of efficacy. These include the prototypical pure allosteric potentiators that have no effects in the absence of glutamate, and other compounds that have allosteric agonist activity and fully activate mGluR5 in the absence of glutamate. It is possible that these new mGluR5 allosteric agonist/potentiators will have advantages or disadvantages to pure allosteric potentiators in vivo. However, at present, allosteric agonist activity has only been established in recombinant systems and it is not clear whether allosteric agonist activity will be observed when measuring multiple functional responses to mGluR5 activation in native systems. Also, the effects of mGluR5 PAMs that have these two modes of efficacy (pure potentiators versus allosteric agonist/potentiators) have not been rigorously evaluated in a broad range of animal models designed to assess potential antipsychotic activity and efficacy in improving different domains of cognitive function. Thus, we will perform a series of studies to systematically test the hypothesis that these novel compounds regulate mGluR5 signaling in brain circuits thought to be important for their potential therapeutic effects. In addition, we will test the hypothesis that mGluR5 PAMs have efficacy in a range of animal models that predict antipsychotic and cognition-enhancing effects and will directly compare the effects of pure allosteric potentiators versus mGluR5 allosteric agonist/potentiators.

Public Health Relevance

Studies in patients suffering from the schizophrenia suggest that drugs that selectively activate a specific receptor for the neurotransmitter glutamate may provide a novel approach for treatment of this debilitating brain disorder. We have discovered new drug like molecules that selectively activate this neurotransmitter receptor. Studies are proposed to test the hypothesis that these novel molecules have actions that predict efficacy in treatment of schizophrenia.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Molecular Neuropharmacology and Signaling Study Section (MNPS)
Program Officer
Nadler, Laurie S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Moran, Sean P; Cho, Hyekyung P; Maksymetz, James et al. (2018) PF-06827443 Displays Robust Allosteric Agonist and Positive Allosteric Modulator Activity in High Receptor Reserve and Native Systems. ACS Chem Neurosci 9:2218-2224
Moran, Sean P; Dickerson, Jonathan W; Cho, Hyekyung P et al. (2018) M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43:1763-1771
Yohn, Samantha E; Conn, P Jeffrey (2018) Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 136:438-448
Stansley, Branden J; Conn, P Jeffrey (2018) The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Curr Opin Pharmacol 38:31-36
Joffe, Max E; Centanni, Samuel W; Jaramillo, Anel A et al. (2018) Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 9:2188-2204
Ghoshal, Ayan; Moran, Sean P; Dickerson, Jonathan W et al. (2017) Role of mGlu5 Receptors and Inhibitory Neurotransmission in M1 Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. ACS Chem Neurosci 8:2254-2265
Joffe, Max E; Santiago, Chiaki I; Engers, Julie L et al. (2017) Metabotropic glutamate receptor subtype 3 gates acute stress-induced dysregulation of amygdalo-cortical function. Mol Psychiatry :
Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D et al. (2017) Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 27:4858-4866
Walker, Adam G; Sheffler, Douglas J; Lewis, Andrew S et al. (2017) Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation. Neuropsychopharmacology 42:2553-2566
Foster, Daniel J; Conn, P Jeffrey (2017) Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 94:431-446

Showing the most recent 10 out of 93 publications