How neural circuits control complex behaviors is a fundamental problem in neuroscience. Revolutionary new tools, such as optogenetics, and the ability to express such tools in molecularly defined neuronal cell types, have transformed our ability to dissect neural function in genetically tractable model organisms such as the mouse. However, a gap remains between the ability to mark, map and manipulate neuronal populations defined by Cre driver transgenic mouse lines, and potential anatomic and functional heterogeneity within those populations. This gap limits our ability to dissect neural circuit function at an appropriate level of cellular specificity. To fill this gap, combinatorial approache will be developed to express optogenetic effectors and other genetically encoded tools in neuronal subpopulations defined by the intersection of their molecular identity, and their activity or connectional specificity. The long-term goal is to elucidate the neural circuits that control decisions between complex, innate social behaviors controlled by the hypothalamus, amygdala and other limbic structures. The overall objective of this application is to develop new methods for identifying and genetically targeting heterogeneous neural cell types contained within populations defined by the expression of a given Cre driver. Proof-of-principle for these methods will be obtained by dissecting hypothalamic circuits that govern behavioral decisions, using innate social behaviors as a robust read-out of targeted optogenetic manipulations. The central objective of this proposal is to develop intersectional methods that combine the expression of a specific Cre driver with orthogonal genetic methods that mark neurons based on their activity during particular behaviors, or their connectivity, in a contingent (logical 'AND') manner. The rationale for this research is that solving this general problem is essential to making forward progress in mapping the circuitry that governs complex behaviors. In this proposal, methods will be developed to mark neurons based on their expression of a specific Cre driver and: their activity during different innate behaviors (Aim 1); their projections to a specific target (Aim 2); and their presynaptic inputs and behavior-specific activation (Aim 3). The contribution will be to create new intersectional tools for marking and manipulating specific neuronal subpopulations that will be generally applicable, and to use them to gain new insights into the functional organization of hypothalamic circuits controlling behavioral decision-making. This contribution is significant because it will create new tools that allow dissection of neural circuit function at an unprecedented level of cellular specificity, and shed new light on an important problem in the neural control of complex behaviors. The approach is innovative, because it will provide intersectional approaches to genetically targeting specific neuronal cell types that have not yet been implemented in mice. The work proposed in this application will, therefore, both advance knowledge in this specific field and, by developing and disseminating novel methods, will also advance knowledge in other fields of neuroscience.

Public Health Relevance

The proposed research is relevant to public health because our ability to diagnose and treat brain disorders is currently limited by our understanding of the fundamental neurobiological mechanisms underlying complex behaviors, and brain states such as emotions. Because of the evolutionary conservation of mammalian brain structures, the knowledge and understanding of neural circuitry controlling these processes in model organisms, such as the mouse, should yield fundamental concepts and particulars that are relevant to understanding the human brain. The research described in this proposal will develop innovative new tools that will aid in the functional dissection of neural circuit mechanisms, and i therefore relevant to NIMH's mission of achieving a 'deeper understanding of fundamental neurobiology' (Insel, T.R. and Landis, S.C., Neuron (2013)).

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH070053-15
Application #
9470913
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Freund, Michelle
Project Start
2004-01-01
Project End
2019-04-30
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Zelikowsky, Moriel; Hui, May; Karigo, Tomomi et al. (2018) The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell 173:1265-1279.e19
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel et al. (2017) Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550:388-392
Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan et al. (2015) Ventromedial hypothalamic neurons control a defensive emotion state. Elife 4:
Lee, Hyosang; Kim, Dong-Wook; Remedios, Ryan et al. (2014) Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509:627-32
Kennedy, Ann; Asahina, Kenta; Hoopfer, Eric et al. (2014) Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition. Cold Spring Harb Symp Quant Biol 79:199-210
Cai, Haijiang; Haubensak, Wulf; Anthony, Todd E et al. (2014) Central amygdala PKC-?(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240-8
Hong, Weizhe; Kim, Dong-Wook; Anderson, David J (2014) Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158:1348-1361
Anthony, Todd E; Dee, Nick; Bernard, Amy et al. (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156:522-36
Lo, Liching; Anderson, David J (2011) A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72:938-50