The brain becomes infected within days after peripheral HIV infection and viral presence persists despite cART. CNS HIV infection often results in the development of HIV Associated Neurocognitive Disorders, or HAND, that are mediated, at least in part, by ongoing neuroinflammation and low level viral persistence that cause CNS damage. A major mechanism by which virus enters the brain is by the transmigration of HIV-infected monocytes and perhaps T cells across the BBB. Under non-pathological conditions, the transmigration of leukocytes across the CNS vasculature does not disrupt the BBB because specific interactions between adhesion molecules, adherens junction and tight junction proteins (termed """"""""cell junction proteins"""""""") on leukocytes and BBB cells maintain the impermeability of these vessels during leukocyte diapedesis. However, during the pathogenesis of NeuroAIDS, leukocyte infiltration into the CNS is associated with BBB compromise. Thus the molecular interactions inherent in leukocyte diapedesis across the BBB are altered, resulting in increased BBB disruption. Our data indicate that HIV infection of monocytes and T cells plus CCL2 as a chemoattractant, but not other chemokines, cause increased transmigration of these cells across a tissue culture model of the BBB and disruption of that barrier. We demonstrated that the virus as well CCL2 induced profound changes in expression, processing and function of diverse cell junction proteins on both leukocytes and brain microvascular endothelial cells. We hypothesize that HIV infection of monocytes and exposure to CCL2 alter their expression, localization, phosphorylation and shedding of cell junction proteins and that these alterations result in aberrant leukocyte/BBB cell interactions, leading to increased transmigration and barrier disruption, contributing to the neuroinflammation and viral damage that characterize NeuroAIDS This renewal is to continue our studies of the mechanisms of transmigration of HIV infected cells across the BBB in response to CCL2, with emphasis on a specific monocyte population that we showed preferentially transmigrates across the BBB in response to CCL2 and is highly susceptible to HIV infection. We will focus on the cell junction molecules PECAM-1, CD99, JAM-A, and ALCAM, as critical proteins involved in dysregulation of monocyte transmigration and disruption of BBB integrity. We also identified additional proteins that may facilitate dysregulated transmigration as well as monocyte susceptibility to HIV infection, and we will examine their expression and function on monocytes. We will examine the contribution of intact and soluble junction proteins to increased transmigration, and determine the route, paracellular or transcellular, of transmigration of uninfected and HIV monocytes. We will demonstrate the in vivo significance of these processes using an SIV model.

Public Health Relevance

HIV infection and HIV associated neurocognitive disorders (HAND) are major emerging global health problems. The prevalence of HAND is increasing as people with AIDS are living longer due to success of antiretroviral therapies (ART). HAND is mediated, at least in part, by inflammation and viral persistence within the CNS, which are present even in many individuals on ART. Our group demonstrated that HIV infected leukocytes transmigrate more exuberantly across the BBB in response to CCL2 as chemoattractant, but not to other chemokines. We propose that CCL2 and/or HIV infection result in profound changes in expression, localization and shedding of the cell junction proteins ALCAM, PECAM-1, JAM- A and CD99 on monocytes and brain microvascular endothelial cells (BMVEC) that enable infected cells to have such increased transmigration across the BBB. In this resubmitted competing renewal we will determine the mechanisms by which these junction proteins are dysregulated on monocytes and BMVEC to result in BBB disruption and increased transmigration in response to CCL2. We propose that targeting these cell junction proteins may be a novel interventional strategy to reduce HIV CNS impairment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH075679-08
Application #
8469908
Study Section
NeuroAIDS and other End-Organ Diseases Study Section (NAED)
Program Officer
Joseph, Jeymohan
Project Start
2005-07-01
Project End
2016-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
8
Fiscal Year
2013
Total Cost
$360,720
Indirect Cost
$144,720
Name
Albert Einstein College of Medicine
Department
Pathology
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Megra, Bezawit W; Eugenin, Eliseo A; Berman, Joan W (2018) Inflammatory mediators reduce surface PrPc on human BMVEC resulting in decreased barrier integrity. Lab Invest 98:1347-1359
Veenstra, Mike; Byrd, Desiree A; Inglese, Matilde et al. (2018) CCR2 on Peripheral Blood CD14+CD16+ Monocytes Correlates with Neuronal Damage, HIV-Associated Neurocognitive Disorders, and Peripheral HIV DNA: reseeding of CNS reservoirs? J Neuroimmune Pharmacol :
Veenstra, Mike; Williams, Dionna W; Calderon, Tina M et al. (2017) Frontline Science: CXCR7 mediates CD14+CD16+ monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 102:1173-1185
Dickens, Alex M; Tovar-Y-Romo, Luis B; Yoo, Seung-Wan et al. (2017) Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal 10:
Calderon, Tina M; Williams, Dionna W; Lopez, Lillie et al. (2017) Dopamine Increases CD14+CD16+ Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 12:353-370
Carvallo, Loreto; Lopez, Lillie; Fajardo, Jorge E et al. (2017) HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS One 12:e0179882
Megra, Bezawit W; Eugenin, Eliseo A; Berman, Joan W (2017) The Role of Shed PrPc in the Neuropathogenesis of HIV Infection. J Immunol 199:224-232
Veenstra, Mike; León-Rivera, Rosiris; Li, Ming et al. (2017) Mechanisms of CNS Viral Seeding by HIV+ CD14+ CD16+ Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. MBio 8:
Tsukrov, Dina; McFarren, Alicia; Morgenstern, Alfred et al. (2016) Combination of Antiretroviral Drugs and Radioimmunotherapy Specifically Kills Infected Cells from HIV-Infected Individuals. Front Med (Lausanne) 3:41
Eugenin, Eliseo A; Berman, Joan W (2016) Improved Methods to Detect Low Levels of HIV Using Antibody-Based Technologies. Methods Mol Biol 1354:265-79

Showing the most recent 10 out of 45 publications