The cortex, striatum and pallidum are three key components of cortico-basal ganglia circuits - these circuits regulate limbic, associative and sensorimotor learning. The embryonic basal telencephalon generates subcortical nuclei and cortical interneurons that are required for the function of these circuits. As such, developmental defects of basal telencephalic development can have a profound influence on cognition, emotion and movement. Defects that alter sensorimotor learning can result in motor phenotypes, as exemplified by chorea, tremor and rigidity seen in disorders such as Huntington's disease and Parkinson's disease. Defects that alter limbic and associative learning can result in affective and cognitive defects that may underlie disorders such as Tourette's, Schizophrenia and addiction. The embryonic basal telencephalon primarily consists of the medial ganglionic eminence (MGE);it produces GABAergic and cholinergic projection neurons of the globus pallidus, nucleus basalis and adjacent regions, and GABAergic and cholinergic interneurons that disperse throughout the striatum and cortex. Thus, the basal telencephalon has a central role in generating components of cortical-basal ganglia circuits. An approach to elucidate the genetic underpinnings that regulate the basal telencephalon is to study the function of transcription factors that control the development and function of the neurons that are produced in this region. In this proposal, I describe experiments that study the functions of four transcription factors: Nkx2.
1 (Aim 2), Lhx6 (Aim 3&4), Lhx7/8 (Aims 3&4) and Ldb1 (Aim 5). We hypothesize that combinatorial and unique functions of these four proteins participate in specifying the identity and properties of neurons generated by the embryonic basal telencephalon;the following schema provides the outline of our hypothesis.
Aim 2 tests Nkx2.1 function in SVZ progenitors, pallidal projection neurons, and in the VZ of the most ventral regions of the basal telencephalon.
Aim 3 studies how Lhx6 regulates MGE differentiation.
Aim 4 tests whether Lhx6/Lhx7/8 coordinately regulate MGE development, and Aim 5 tests the function of Ldb1, and whether its phenotypes resemble Lhx6/7(8) mutants. In addition, we will perform fate mapping studies of cells produced in the embryonic basal telencephalon, using Cre-expressing alleles (Aim 1);these alleles will also be useful genetic tools for generating conditional mutants, such as in Aims 2 and 5.

Public Health Relevance

The results from the proposed studies will provide basic information regarding the genetic and developmental mechanisms that control formation of brain regions that control cognition and movement. Disruption of these mechanisms can cause psychiatric and neurological disorders that include mental retardation, autism, schizophrenia, movement disorders and addiction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH081880-05
Application #
8463617
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Panchision, David M
Project Start
2009-06-20
Project End
2014-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
5
Fiscal Year
2013
Total Cost
$367,092
Indirect Cost
$129,492
Name
University of California San Francisco
Department
Psychiatry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Sandberg, Magnus; Taher, Leila; Hu, Jianxin et al. (2018) Genomic analysis of transcriptional networks directing progression of cell states during MGE development. Neural Dev 13:21
Hu, Jia Sheng; Vogt, Daniel; Lindtner, Susan et al. (2017) Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 144:2837-2851
Hu, Jia Sheng; Vogt, Daniel; Sandberg, Magnus et al. (2017) Cortical interneuron development: a tale of time and space. Development 144:3867-3878
Chen, Ying-Jiun J; Friedman, Brad A; Ha, Connie et al. (2017) Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci Rep 7:45656
Silberberg, Shanni N; Taher, Leila; Lindtner, Susan et al. (2016) Subpallial Enhancer Transgenic Lines: a Data and Tool Resource to Study Transcriptional Regulation of GABAergic Cell Fate. Neuron 92:59-74
Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni et al. (2016) Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons. Neuron 91:1260-1275
Nord, Alex S; Pattabiraman, Kartik; Visel, Axel et al. (2015) Genomic perspectives of transcriptional regulation in forebrain development. Neuron 85:27-47
Correa, Stephanie M; Newstrom, David W; Warne, James P et al. (2015) An estrogen-responsive module in the ventromedial hypothalamus selectively drives sex-specific activity in females. Cell Rep 10:62-74
Hoch, Renée V; Lindtner, Susan; Price, James D et al. (2015) OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 12:482-94
Vogt, Daniel; Wu, Pei-Rung; Sorrells, Shawn F et al. (2015) Viral-mediated Labeling and Transplantation of Medial Ganglionic Eminence (MGE) Cells for In Vivo Studies. J Vis Exp :

Showing the most recent 10 out of 28 publications