The structure and function of nicotinic acetylcholine receptors (AChRs) are being investigated. Specific immunosuppressive therapy of the autoimmune response to muscle AChRs which occurs in myasthenia gravis (MG) and its animal model, experimental autoimmune myasthenia gravis (EAMG), is also being investigated. One goal is to determine the amount, subunit composition, stoichiometry, and arrangement of neuronal AChR subtypes. This will require expanding our library of subunit-specific monoclonal antibodies (mAbs)and immunoisolating native AChRs. Determining subunit stoichiometry and arrangement will involve expressing cloned AChRs. A second goal is to express a properly assembled, water-soluble extracellular domain of an AChR in amounts suitable for crystallographic studies. We have succeeded in expressing tiny amounts of water-soluble 7 AChR extracellular domains with native ligand binding proteins, but will need to devise methods to increase the efficiency of assembly and increase the amount of protein expressed. This could lead to x-ray crystallographic determination of the structure of an archetypic member of a gene superfamily of wide medical significance. A third goal is to determine the pharmacological and electrophysiological properties of cloned human neuronal AChR subtypes. In addition to expression studies in Xenopus oocytes, this will involve development of a series of permanently transfected cell lines. This should define the functional properties of AChR subtypes, which are the target of nicotine and potential subtype-specific nicotinic drugs now being developed. A fourth goal is to determine the mechanisms by which chronic exposure to nicotine alters the amounts and functional properties of cloned human neuronal AChRs. These studies should reveal some of the molecular mechanisms by which nicotine produces its and huge medical impact, while also providing insights on possible effects of nicotinic agonists being developed as drugs. A fifth goal is to determine the location of AChR subtypes. This will involve providing our expanded library of AChR-subunit specific mAbs to collaborators. A sixth goal is to develop a practical specific immunosuppressive therapy for EAMG. This will involve inducing tolerance through administration of bacterially-expressed human muscle AChR subunits. It is hoped that this will lead to a specific therapy for MG.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS011323-27
Application #
6186923
Study Section
Special Emphasis Panel (ZRG1-BDCN-5 (01))
Program Officer
Nichols, Paul L
Project Start
1976-09-01
Project End
2004-03-31
Budget Start
2000-04-01
Budget End
2001-03-31
Support Year
27
Fiscal Year
2000
Total Cost
$559,193
Indirect Cost
Name
University of Pennsylvania
Department
Neurosciences
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon (2015) Expression of cloned ?6* nicotinic acetylcholine receptors. Neuropharmacology 96:194-204
Afshordel, Sarah; Wood, Wellington Gibson; Igbavboa, Urule et al. (2014) Impaired geranylgeranyltransferase-I regulation reduces membrane-associated Rho protein levels in aged mouse brain. J Neurochem 129:732-42
Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R et al. (2014) Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain. J Neurochem 129:721-31
Eaton, J Brek; Lucero, Linda M; Stratton, Harrison et al. (2014) The unique ?4+/-?4 agonist binding site in (?4)3(?2)2 subtype nicotinic acetylcholine receptors permits differential agonist desensitization pharmacology versus the (?4)2(?2)3 subtype. J Pharmacol Exp Ther 348:46-58
Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi et al. (2014) Efficient expression of functional (?6?2)2?3 AChRs in Xenopus oocytes from free subunits using slightly modified ?6 subunits. PLoS One 9:e103244
Kuryatov, Alexander; Mukherjee, Jayanta; Lindstrom, Jon (2013) Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional ?7 AChRs. PLoS One 8:e62246
O'Neill, Heidi C; Laverty, Duncan C; Patzlaff, Natalie E et al. (2013) Mice expressing the ADNFLE valine 287 leucine mutation of the ?2 nicotinic acetylcholine receptor subunit display increased sensitivity to acute nicotine administration and altered presynaptic nicotinic receptor function. Pharmacol Biochem Behav 103:603-21
McClure-Begley, Tristan D; Stone, Kathy L; Marks, Michael J et al. (2013) Exploring the nicotinic acetylcholine receptor-associated proteome with iTRAQ and transgenic mice. Genomics Proteomics Bioinformatics 11:207-18
Lindstrom, Jon; Luo, Jie (2012) Myasthenogenicity of the main immunogenic region. Ann N Y Acad Sci 1274:9-13
Luo, Jie; Lindstrom, Jon (2012) Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors. Autoimmunity 45:245-52

Showing the most recent 10 out of 158 publications