The freeze-fracture technique is useful in the elucidation of membrane structure and events. Freeze-fracture has revealed intramembrane particle specialization in pre- and post-synaptic membranes of mature neuromuscular junctions and clarified events in the release of neurotransmitters. The technique has not yet been used to study the development of neuromuscular junctions, although such development has been followed by electrophysiology and electron microscopy of thin sections. The results of these techniques, however, have not been correlated by electron microscopic observation of the same junction studied electrophysiologically. Correlated freeze-fracture and thin-section studies of electrophysiologically-identified neuromuscular junctions are now possible with a method for freeze-fracturing neurites and myotubes developing in tissue culture. Nearly all the myotubes are fractured, and neurite-myotube contacts identified electrophysiologically can be relocated in replicas. The proposed research exploits these techniques to further clarify the stages in development of neuromuscular junction, to determine the minimum morphology concomitant with junctional transmission, and to enhance understanding of the mechanisms involved in turnover and stabilization of intramembrane particle specializations. Mapping techniques are also used to study the degradation of acetylcholine receptors induced by cross-linkage with myasthenic antibodies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS015513-06
Application #
3396298
Study Section
Neurological Sciences Subcommittee 1 (NLS)
Project Start
1979-07-01
Project End
1987-03-31
Budget Start
1985-04-01
Budget End
1987-03-31
Support Year
6
Fiscal Year
1985
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
Schools of Medicine
DUNS #
003255213
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Pumplin, D W; Getschman, E (2000) Synaptic proteins in rat taste bud cells: appearance in the Golgi apparatus and relationship to alpha-gustducin and the Lewis(b) and A antigens. J Comp Neurol 427:171-84
Pumplin, D W; Getschman, E; Boughter Jr, J D et al. (1999) Differential expression of carbohydrate blood-group antigens on rat taste-bud cells: relation to the functional marker alpha-gustducin. J Comp Neurol 415:230-9
De Deyne, P G; O'Neill, A; Resneck, W G et al. (1998) The vitronectin receptor associates with clathrin-coated membrane domains via the cytoplasmic domain of its beta5 subunit. J Cell Sci 111 ( Pt 18):2729-40
Bloch, R J; Bezakova, G; Ursitti, J A et al. (1997) A membrane skeleton that clusters nicotinic acetylcholine receptors in muscle. Soc Gen Physiol Ser 52:177-95
Luther, P W; Samuelsson, S J; Bloch, R J et al. (1996) Cytoskeleton-membrane interactions at the postsynaptic density of Xenopus neuromuscular junctions. J Neurocytol 25:417-27
Pumplin, D W (1995) The membrane skeleton of acetylcholine receptor domains in rat myotubes contains antiparallel homodimers of beta-spectrin in filaments quantitatively resembling those of erythrocytes. J Cell Sci 108 ( Pt 9):3145-54
Bloch, R J; Sealock, R; Pumplin, D W et al. (1994) Association of acetylcholine receptors with peripheral membrane proteins: evidence from antibody-induced coaggregation. J Membr Biol 138:13-28
Luther, P W; Samuelsson, S J; Pumplin, D W et al. (1994) Clustered acetylcholine receptors have two levels of organization in Xenopus muscle cells. Cell Motil Cytoskeleton 28:179-93
Samuelsson, S J; Luther, P W; Pumplin, D W et al. (1993) Structures linking microfilament bundles to the membrane at focal contacts. J Cell Biol 122:485-96
Dmytrenko, G M; Pumplin, D W; Bloch, R J (1993) Dystrophin in a membrane skeletal network: localization and comparison to other proteins. J Neurosci 13:547-58

Showing the most recent 10 out of 18 publications