The enteric nervous system is a unique region of the peripheral nervous system that is particularly well-suited for studies of the development of neuronal diversity. It has a structure and chemistry that resembles the CNS but is a much less complex system. The enteric nervous system has a limited number of known types of neuron (including intrinsic cholinergic neurons, serotonergic neurons and neurons that store peptides as well as the axons of extrinsic adrenergic neurons) and their transmitter mechanisms provide an array of convenient markers for neuronal detection. Preliminary studies have indicated that a sequential order is followed in the appearance of enteric neurons that is reproduced in several mammalian species and also in birds. This observation, and the recent evidence that the microenvironment of the tissue in which development occurs is vital to the final determination of such neuronal characteristics as transmitter choice, has led us to want to test the hypothesis that the microenvironment of the gut is critical in enteric neuronal development and to the deveopment of diversity among enteric neurons. Normal development of the enteric nervous system will first be examined, utilizing transmitter-specific markers in order to obtain clearly defined quantitative end-points against which the effects of experimental procedures can be judged. These studies will also use organotypic tissue culture techniques and quantitative electron microscopy. After normal development has been examined, manipulations of the enteric microenvironment will be attempted.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS015547-06
Application #
3396308
Study Section
Neurology B Subcommittee 1 (NEUB)
Project Start
1979-12-01
Project End
1985-11-30
Budget Start
1984-12-01
Budget End
1985-11-30
Support Year
6
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
Schools of Medicine
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10027
Rao, Meenakshi; Gershon, Michael D (2018) Enteric nervous system development: what could possibly go wrong? Nat Rev Neurosci 19:552-565
Khlevner, Julie; Park, Yeji; Margolis, Kara Gross (2018) Brain-Gut Axis: Clinical Implications. Gastroenterol Clin North Am 47:727-739
Israelyan, Narek; Margolis, Kara Gross (2018) Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 132:1-6
Gershon, Michael D (2018) Development of the Enteric Nervous System: A Genetic Guide to the Perplexed. Gastroenterology 154:478-480
Robson, Matthew J; Quinlan, Meagan A; Margolis, Kara Gross et al. (2018) p38? MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 115:E10245-E10254
Margolis, Kara G; Buie, Timothy M; Turner, J Blake et al. (2018) Development of a Brief Parent-Report Screen for Common Gastrointestinal Disorders in Autism Spectrum Disorder. J Autism Dev Disord :
Rao, Meenakshi; Rastelli, Daniella; Dong, Lauren et al. (2017) Enteric Glia Regulate Gastrointestinal Motility but Are Not Required for Maintenance of the Epithelium in Mice. Gastroenterology 153:1068-1081.e7
Margolis, Kara Gross (2017) A role for the serotonin reuptake transporter in the brain and intestinal features of autism spectrum disorders and developmental antidepressant exposure. J Chem Neuroanat 83-84:36-40
Israelyan, Narek; Margolis, Kara Gross (2017) KLF-5 extends its fingers to desmosomes: the next frontier for enteric epithelial research? Am J Physiol Gastrointest Liver Physiol 313:G476-G477
Gross Margolis, Kara; Vittorio, Jennifer; Talavera, Maria et al. (2017) Enteric serotonin and oxytocin: endogenous regulation of severity in a murine model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 313:G386-G398

Showing the most recent 10 out of 141 publications