Relatively brief periods of ongoing (sec - min) afferent nociceptive stimulation, as evoked with subcutaneous injection of formalin, will (i) evoke an acute afferent barrage which correlates with the acute behavioral response and ii) trigger a long lasting facilitation of spinal nociceptive processing in which a minimum stimulus yields an exaggerated pain state (hyperalgesia). Specific pharmacological interventions with spinal agents have suggested that the hyperalgesic component may be mediated by activation of spinal excitatory amino acid (EAA) and prostanoid (PG) receptors and the production of nitric oxide (NO). The observed pharmacological correlates of the behavioral consequences of acute injury yields several specific hypotheses: 1) Tissue injury (as with formalin) leads to the acute activation of spinal substance P (SP) and glutamate receptors. 2) Activation of glutamate receptors of the NMDA and nonNMDA type and SP receptors of the NK1 type evoke the subsequent formation of COX (cyclo-oxygenase) and NOS (nitric oxide synthase) products. 3) Spinal COX and NOS products enhance the release of EAA. This cascade suggests that activation of glutamate or SP receptors by endogenous release will evoke NO and PG release from spinal cord and that event will subsequently enhance glutamate release. 4) Over longer intervals of afferent activation (min-hrs) as generated by inflamed knee joints, spinal COX and NOS, under the control of circulating corticoids, may display induction, yielding enzymes with a distinct inhibitor-drug profile. Such induction would yield increased PG and NO, an increased release of spinal glutamate and a hyperalgesia with a pharmacology distinct from that observed with short term (sec-min) stimulation. To address these hypotheses, we will investigate the extra-cellular levels of EAA, NO and PGs, using in vivo lumbar intrathecal dialysis in the unanesthetized rat and correlate these with changes in """"""""pain"""""""" behavior. The pharmacology of this release and concurrent changes in behavior will be characterized by the spinal delivery of receptor-preferring agonists/antagonists and inhibitors. This work elucidates spinal systems mediating the profound changes in processing noted in a post injury state. Aside from an appreciation of the role played by novel spinal systems in pain processing and their plasticity in the face of afferent activation, protracted afferent drive is a pervasive component of a post-injury pain state. Elucidation of these mechanisms has relevance to the evolution of pharmacotherapy for its control in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS016541-19
Application #
2891593
Study Section
Neurological Sciences Subcommittee 1 (NLS)
Program Officer
Kitt, Cheryl A
Project Start
1988-09-01
Project End
2001-04-30
Budget Start
1999-05-01
Budget End
2001-04-30
Support Year
19
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Park, H J; Sandor, K; McQueen, J et al. (2016) The effect of gabapentin and ketorolac on allodynia and conditioned place preference in antibody-induced inflammation. Eur J Pain 20:917-25
Bas, D B; Abdelmoaty, S; Sandor, K et al. (2015) Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 19:260-70
Woller, S A; Corr, M; Yaksh, T L (2015) Differences in cisplatin-induced mechanical allodynia in male and female mice. Eur J Pain 19:1476-85
Park, Hue Jung; Stokes, Jennifer A; Corr, Maripat et al. (2014) Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 73:25-34
Marino, Marc J; Terashima, Tetsuji; Steinauer, Joanne J et al. (2014) Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 155:674-84
Gregus, Ann M; Dumlao, Darren S; Wei, Spencer C et al. (2013) Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J 27:1939-49
Stokes, Jennifer A; Cheung, Jonathan; Eddinger, Kelly et al. (2013) Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice. J Neuroinflammation 10:148
Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany et al. (2013) Spinal astrocytes produce and secrete dynorphin neuropeptides. Neuropeptides 47:109-15
Park, Hue Jung; Stokes, Jennifer A; Pirie, Elaine et al. (2013) Persistent hyperalgesia in the cisplatin-treated mouse as defined by threshold measures, the conditioned place preference paradigm, and changes in dorsal root ganglia activated transcription factor 3: the effects of gabapentin, ketorolac, and etanercept. Anesth Analg 116:224-31
Stokes, Jennifer A; Corr, Maripat; Yaksh, Tony L (2013) Spinal toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFN?. Pain 154:733-42

Showing the most recent 10 out of 99 publications