The long term goal of the proposed work is to characterize at high resolution the structure and chemistry of circuits in the mammalian brain that underlie the basic drives that keep individual animals alive and assure perpetuation of the species associated with hunger and thirst, defensive behavior, reproductive behavior, and the sleep/wake cycle. Previous neuroanatomical work has clarified the input/output relationships and neurotransmitters of medial hypothalamic subsystems subserving each of these functions, and shown that they project topographically to the hypothalamic lateral zone (LHZ). Functional evidence suggests that the LHZ plays an important role in positive reinforcement, behavioral arousal, and various aspects of motivated behavior, although the topographic organization of its neural inputs and axonal projections is very poorly understood. The proposed work is based on the hypothesis that the LHZ is differentiated such that particular regions are components of a specific anatomical/functional subsystem, other regions serve to link multiple subsystems, and yet others play a general or nonspecific, modulatory role in motivated behavior.
Two specific aims, which are based on the use of experimental neuroanatomical methods in the rat, are designed to explore this hypothesis. (1) A systematic computer graphics may of LHZ differentiation into regions based on in situ hybridization patterns of neurotransmitter-related mRNA expression will be generated. And (2) the basic input/output relationships of these regions vis-a-vis instinctive behavior subsystems as well as other functional systems of the cerebral hemispheres and brainstem will e determined using combined axonal transport/histochemical methods. This analytical/synthetic approach is designed to provide a structural framework for the rational design of functional experiments, as well as provide new insights into, and eventually treatments for, diseases that involve forebrain neural systems controlling eating, drinking, aggression and defense, reproduction, the sleep-wake cycle, and presumably mood disorders as well.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS016686-22
Application #
6187039
Study Section
Neurology B Subcommittee 2 (NEUB)
Program Officer
Edwards, Emmeline
Project Start
1980-09-01
Project End
2002-05-31
Budget Start
2000-06-01
Budget End
2001-05-31
Support Year
22
Fiscal Year
2000
Total Cost
$293,312
Indirect Cost
Name
University of Southern California
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Hahn, Joel D; Swanson, Larry W (2012) Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 520:1831-90
Canteras, Newton S; Ribeiro-Barbosa, Erika Renata; Goto, Marina et al. (2011) The retinohypothalamic tract: comparison of axonal projection patterns from four major targets. Brain Res Rev 65:150-83
Hahn, Joel D (2010) Comparison of melanin-concentrating hormone and hypocretin/orexin peptide expression patterns in a current parceling scheme of the lateral hypothalamic zone. Neurosci Lett 468:12-7
Hahn, Joel D; Swanson, Larry W (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64:14-103
Dong, Hong-Wei; Swanson, Larry W; Chen, Lin et al. (2009) Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci U S A 106:11794-9
Simmons, Donna M; Swanson, Larry W (2009) Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J Comp Neurol 516:423-41
Simmons, Donna M; Swanson, Larry W (2009) Comparing histological data from different brains: sources of error and strategies for minimizing them. Brain Res Rev 60:349-67
Simmons, Donna M; Swanson, Larry W (2008) High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neurosci Lett 438:85-9
Bota, Mihail; Swanson, Larry W (2007) Online workbenches for neural network connections. J Comp Neurol 500:807-14
Dong, Hong-Wei; Swanson, Larry W (2006) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494:142-78

Showing the most recent 10 out of 81 publications