The goal of this research is to define the functional organization and internal operations of the brainstem neural network through which carotid baroreceptors and chemoreceptors regulate breathing. Carotid chemoreceptors and baroreceptors will be selectively stimulated to perturb respiratory related neural activity in anesthetized or decerebrate artificially ventilated cats. Spike train analysis methods (e.g., gravity, joint peristimulus time histograms), optical measurements of scattered light signals, and spike triggered averaging of intracellular recordings, will be used to assess dynamic functional connectivity among cardiorespiratory related neurons. The plausibility of network models derived from these approaches will be tested with computer simulations. Planned experiments will address six hypotheses. 1. Long-term facilitation (LTF) of respiratory drive induced by carotid chemoreceptor stimulation can be """"""""erased"""""""" in a graded manner by carotid baroreceptor stimulation. Removal of LTF resets the equilibrium state of a distributed neuronal assembly that regulates the gain of these reflexes and respiratory drive. 2. Interactions among neurons of the nucleus tractus solitarius (NTS) that respond to carotid baroreceptors or chemoreceptors contribute to dynamic gain control of inputs from these receptors. 3. Neurons in the caudal NTS carry information from carotid chemoreceptors and baroreceptors to cardiorespiratory raphe neurons. 4. Raphe neuronal assemblies influence the responsiveness of NTS neurons to carotid baroreceptors and chemoreceptors through the dynamic modulation of impulse synchrony among NTS neurons. 5. Raphe neurons influence breathing and vasomotor reflexes through common """"""""multifunctional"""""""" interneurons in the caudal and rostral ventrolateral medulla. 6. Synchronous assemblies of raphe neurons converge on premotor bulbospinal neurons. Long-term facilitation of respiratory drive is due, at least in part, to maintained changes in firing rate of raphe neurons that innervate these neurons. Numerous disorders of breathing and cardiovascular control result from abnormalities in the central nervous system. Improved treatments and management of these problems are dependent on a better understanding of the neural networks that regulate these functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS019814-13
Application #
2379593
Study Section
Respiratory and Applied Physiology Study Section (RAP)
Program Officer
Baughman, Robert W
Project Start
1984-04-01
Project End
1999-02-28
Budget Start
1997-03-01
Budget End
1998-02-28
Support Year
13
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of South Florida
Department
Physiology
Type
Schools of Medicine
DUNS #
City
Tampa
State
FL
Country
United States
Zip Code
33612
Lindsey, Bruce G; Nuding, Sarah C; Segers, Lauren S et al. (2018) Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 33:281-297
Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E et al. (2015) Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea. J Neurophysiol 114:2162-86
Segers, L S; Nuding, S C; Ott, M M et al. (2015) Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network. J Neurophysiol 113:352-68
O'Connor, Russell; Segers, Lauren S; Morris, Kendall F et al. (2012) A joint computational respiratory neural network-biomechanical model for breathing and airway defensive behaviors. Front Physiol 3:264
Morris, K F; Nuding, S C; Segers, L S et al. (2010) Respiratory and Mayer wave-related discharge patterns of raphe and pontine neurons change with vagotomy. J Appl Physiol 109:189-202
Dick, Thomas E; Baekey, David M; Paton, Julian F R et al. (2009) Cardio-respiratory coupling depends on the pons. Respir Physiol Neurobiol 168:76-85
Dick, Thomas E; Shannon, Roger; Lindsey, Bruce G et al. (2008) Pontine respiratory-modulated activity before and after vagotomy in decerebrate cats. J Physiol 586:4265-82
Lindsey, Bruce G; Gerstein, George L (2006) Two enhancements of the gravity algorithm for multiple spike train analysis. J Neurosci Methods 150:116-27
Dick, Thomas E; Shannon, Roger; Lindsey, Bruce G et al. (2005) Arterial pulse modulated activity is expressed in respiratory neural output. J Appl Physiol 99:691-8
Dick, Thomas E; Morris, Kendall F (2004) Quantitative analysis of cardiovascular modulation in respiratory neural activity. J Physiol 556:959-70

Showing the most recent 10 out of 34 publications