Leber Hereditary Optic Neuropathy (LHON), the first inherited mtDNA disease identified, stereotypically presents as acute onset blindness in midlife and is one of the most common mtDNA mitochondrial disease phenotypes, >1 in 7000. LHON commonly results from missense mutations in mtDNA complex I (ND) genes, though rarer LHON mutations can occur in any mtDNA gene. LHON complex I gene mutations result in progressive retinal ganglion cell (RGC) and optic nerve degeneration with males being 2 to 5 times more likely to be affected than females and with a highly variable penetrance. Because of the unique tissue specificity of LHON, an animal model is required to investigate the neuronal, RGC and optic nerve physiology and pathology and to develop and test pharmacological and genetic therapies. After twenty years of development we have succeeded in isolating in the mouse mtDNA a mutation that is known to cause optic atrophy in humans (ND6 P25L) and in introducing this mtDNA mutation into the mouse female germ line in the homoplasmic state. This mouse manifests all of the features of LHON possible given the anatomical differences human and mice eyes. Analysis of synaptosomal ND6 P25L mitochondria has revealed a unique complex I defect in which ROS production is chronically elevated while ATP production is only minimally impaired. Hence, the primary causal factor in LHON appears to be chronic RGC oxidative stress. We now propose to use this pathophysiological insight and mouse model to further clarify the physiological consequences of LHON mutations for the RGC and optic nerve. We will then investigate the importance of nuclear-cytoplasmic interactions in generating the variable penetrance of LHON by combining the ND6 P25L mtDNA with a knockin missense mutation in an X- linked complex I gene and with an inducible mitochondrially-targeted catalase (mCAT). The former combination will permit investigation of the genetics of male bias and the later will allow confirmation of the importance of mitochondrial ROS in RGC and optic nerve toxicity and the role of nDNA antioxidant gene variation in modulating mutant mtDNA pathology. Our mouse model will also be used to test the efficacy of antioxidant drugs in inhibiting the onset of LHON and of benzofibrate in repairing mitochondrial and RGC oxidative damage through induction of mitochondrial biogenesis. Finally, we will prepare an AAV-mCAT vector for intra-orbital injection to transduce the mCAT catalytic antioxidant enzyme into the ND6 P25L RGC mitochondria in hopes of inhibiting RGC ROS production and optic atrophy. The AAV-mCAT experiments will be complemented by AAV transduction of allotopic mtDNA ND6 genes with either the universal genetic code or the mtDNA code. The former mRNAs will be translated on cytosolic ribosomes and the protein imported into the mitochondrion while the latter will carry RNA import signals to induce the uptake of the mRNA by the mitochondria and translation on mitochondrial ribosomes. Thus our mtDNA mutant mouse model of LHON has provided new insight into the pathophysiology of LHON and new avenues for therapeutics.

Public Health Relevance

Mitochondrial diseases are now recognized as among the most common metabolic diseases. Furthermore, mitochondrial DNA (mtDNA) mutations have been implicated in a wide range of metabolic and degenerative diseases, various cancers, and aging. By developing mouse models of mtDNA disease we are in position to understand the underlying basis of these diseases and to develop effective therapeutics-advances which promise to have broad applications in the diagnosis and treatment of many common human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS021328-31
Application #
8820085
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Gwinn, Katrina
Project Start
1984-09-01
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
31
Fiscal Year
2015
Total Cost
$488,186
Indirect Cost
$197,599
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Singh, Larry N; Crowston, Jonathan G; Lopez Sanchez, M Isabel G et al. (2018) Mitochondrial DNA Variation and Disease Susceptibility in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 59:4598-4602
Pei, Liming; Wallace, Douglas C (2018) Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 83:722-730
Ortiz-González, Xilma R; Tintos-Hernández, Jesus A; Keller, Kierstin et al. (2018) Homozygous boricua TBCK mutation causes neurodegeneration and aberrant autophagy. Ann Neurol 83:153-165
Weisz, Eliana D; Towheed, Atif; Monyak, Rachel E et al. (2018) Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function. Hum Mol Genet 27:95-106
Kandel, Judith; Picard, Martin; Wallace, Douglas C et al. (2017) Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. J R Soc Interface 14:
Kim, Chul; Potluri, Prasanth; Khalil, Ahmed et al. (2017) An X-chromosome linked mouse model (Ndufa1S55A) for systemic partial Complex I deficiency for studying predisposition to neurodegeneration and other diseases. Neurochem Int 109:78-93
Morrow, Ryan M; Picard, Martin; Derbeneva, Olga et al. (2017) Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A 114:2705-2710
Sonney, Sanjay; Leipzig, Jeremy; Lott, Marie T et al. (2017) Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP. PLoS Comput Biol 13:e1005867
Wallace, Douglas C (2017) A Mitochondrial Etiology of Neuropsychiatric Disorders. JAMA Psychiatry 74:863-864
Coskun, Pinar; Helguera, Pablo; Nemati, Zahra et al. (2017) Metabolic and Growth Rate Alterations in Lymphoblastic Cell Lines Discriminate Between Down Syndrome and Alzheimer's Disease. J Alzheimers Dis 55:737-748

Showing the most recent 10 out of 210 publications