I will continue to study glutamate activated single channel conductances in cultured hippocampal neurons using patch clamp recording techniques. Several specific experiments are planned. Establishment of a dose response relationship for the various angonists is particularly important. This information will allow us to determine the Kd's for activation of the various conductances. Permeability experiments will also be performed using symmetrical and non-symmetrical solutions of cesium, sodium and lithium salts with and without calcium. The Kd of block of the large conductance by magnesium will be determined by measuring closed times at several different voltages and different concentrations of magnesium. The effects of glutamate antagonists on the ability of the different agonists to open the various conductances will be determined. Finally, I will determine whether the different conductances are correlated in time. All of these experiments will define important biophysical parameters of glutamate-activated single channel conductances. In addition, the data obtained from all of the experiments will provide a basis from which it may be possible to determine whether glutamate activates a single channel with at least two receptor sites or two or more discrete channels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS021419-03
Application #
3402519
Study Section
Neurological Sciences Subcommittee 1 (NLS)
Project Start
1984-09-01
Project End
1987-08-31
Budget Start
1986-09-01
Budget End
1987-08-31
Support Year
3
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Yale University
Department
Type
Schools of Medicine
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Smith, T Caitlin; Jahr, Craig E (2002) Self-inhibition of olfactory bulb neurons. Nat Neurosci 5:760-6
Bergles, Dwight E; Tzingounis, Anastassios V; Jahr, Craig E (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22:10153-62
Diamond, J S; Jahr, C E (2000) Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J Neurophysiol 83:2835-43
Bergles, D E; Diamond, J S; Jahr, C E (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293-8
Dzubay, J A; Jahr, C E (1999) The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19:5265-74
Otis, T S; Jahr, C E (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099-110
Diamond, J S; Bergles, D E; Jahr, C E (1998) Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21:425-33
Diamond, J S; Jahr, C E (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672-87
Otis, T S; Kavanaugh, M P; Jahr, C E (1997) Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277:1515-8
Dzubay, J A; Jahr, C E (1996) Kinetics of NMDA channel opening. J Neurosci 16:4129-34

Showing the most recent 10 out of 31 publications