The voltage-gated sodium channel is the biochemical basis of excitability in many nerve, muscle and secretory cells. Therefore, activation of sodium channel gene expression is a prerequisite for the development of excitability in these cell types. The long-term goal of our research is to elucidate the molecular events involved in tissue-specific and developmental regulation of the mammalian sodium channel genes. We have proposed three specific aims to achieve this goal, which make use of genomic clones specific for the brain type I and type II sodium channels. First, we will identify the DNA elements responsible for tissue-specific expression of the type I and type II genes. For these studies, the putative regulatory regions of the sodium channel genes will be dissected by deletional analysis and fused to a easily assayable reporter gene. Biological activity of the fusion genes will be determined in cell lines and in transgenic mice. Second, we will determine whether there are specific elements in the type I and type II genes that are required for their activation during neuronal differentiation. The expression of sodium channel fusion genes will be studied in the nervous system of developing transgenic mice and in a tissue culture model for neuronal differentiation. Third, we will characterize the cellular factors that regulate sodium channel gene expression in neuronal cells. A novel strategy for directly cloning specific DNA-binding proteins will be tested. These studies will provide a framework for understanding the molecular mechanisms involved in the development of excitability. They will also provide information on the elements in neuronal genes that are responsible for directing expression to specific cell types within the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS022518-08
Application #
3405029
Study Section
Neurology C Study Section (NEUC)
Project Start
1989-07-01
Project End
1993-06-30
Budget Start
1992-07-01
Budget End
1993-06-30
Support Year
8
Fiscal Year
1992
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Type
Schools of Arts and Sciences
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Monaghan, Caitlin E; Nechiporuk, Tamilla; Jeng, Sophia et al. (2017) REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A 114:E406-E415
Nechiporuk, Tamilla; McGann, James; Mullendorff, Karin et al. (2016) The REST remodeling complex protects genomic integrity during embryonic neurogenesis. Elife 5:e09584
Linhoff, Michael W; Garg, Saurabh K; Mandel, Gail (2015) A high-resolution imaging approach to investigate chromatin architecture in complex tissues. Cell 163:246-55
Yao, Huilan; Goldman, Devorah C; Fan, Guang et al. (2015) The Corepressor Rcor1 Is Essential for Normal Myeloerythroid Lineage Differentiation. Stem Cells 33:3304-14
Yao, Huilan; Goldman, Devorah C; Nechiporuk, Tamilla et al. (2014) Corepressor Rcor1 is essential for murine erythropoiesis. Blood 123:3175-84
Cargnin, Francesca; Nechiporuk, Tamilla; Müllendorff, Karin et al. (2014) An RNA binding protein promotes axonal integrity in peripheral neurons by destabilizing REST. J Neurosci 34:16650-61
McGann, James C; Oyer, Jon A; Garg, Saurabh et al. (2014) Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype. Elife 3:e04235
Mandel, Gail; Fiondella, Christopher G; Covey, Matthew V et al. (2011) Repressor element 1 silencing transcription factor (REST) controls radial migration and temporal neuronal specification during neocortical development. Proc Natl Acad Sci U S A 108:16789-94
Magill, Stephen T; Cambronne, Xiaolu A; Luikart, Bryan W et al. (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107:20382-7
Gu, Haidong; Liang, Yu; Mandel, Gail et al. (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102:7571-6

Showing the most recent 10 out of 31 publications