Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS026527-08
Application #
2265976
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1988-09-01
Project End
1998-04-30
Budget Start
1996-05-01
Budget End
1997-04-30
Support Year
8
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Twery, E Naomi; Raper, Jonathan A (2011) SDF1-induced antagonism of axonal repulsion requires multiple G-protein coupled signaling components that work in parallel. PLoS One 6:e18896
Chalasani, Sreekanth H; Sabol, Angela; Xu, Hong et al. (2007) Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 27:973-80
Jia, Li; Cheng, Lan; Raper, Jonathan (2005) Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 282:411-21
Kreibich, Thomas A; Chalasani, Sreekanth H; Raper, Jonathan A (2004) The neurotransmitter glutamate reduces axonal responsiveness to multiple repellents through the activation of metabotropic glutamate receptor 1. J Neurosci 24:7085-95
Chalasani, Sreekanth H; Baribaud, Frederic; Coughlan, Christine M et al. (2003) The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci 23:4601-12
Chalasani, Sreekanth H; Sabelko, Kimberly A; Sunshine, Mary J et al. (2003) A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23:1360-71
Niclou, S P; Jia, L; Raper, J A (2000) Slit2 is a repellent for retinal ganglion cell axons. J Neurosci 20:4962-74
Renzi, M J; Wexler, T L; Raper, J A (2000) Olfactory sensory axons expressing a dominant-negative semaphorin receptor enter the CNS early and overshoot their target. Neuron 28:437-47
Renzi, M J; Feiner, L; Koppel, A M et al. (1999) A dominant negative receptor for specific secreted semaphorins is generated by deleting an extracellular domain from neuropilin-1. J Neurosci 19:7870-80
Miao, H Q; Soker, S; Feiner, L et al. (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233-42

Showing the most recent 10 out of 11 publications