This proposal first aims to improve, develop, and test powerful new molecular techniques to monitor and manipulate dynamic signal transduction in neurons. Goals for voltage indicators based on photoinduced electron transfer include greater sensitivity, genetic targeting, and longer wavelengths. New far-red fluorescent proteins engineered from phycobiliproteins are promising building blocks for in vivo indicators of cell cycle status, Ca2+, and protease activity. A novel alternative approach to measuring and manipulating neuronal activity is to engineer an artificial transcription factor activated by simultaneous high [Ca2+] and illumination, greatly improving on endogenous activity reporters such as c-fos. The genetically encoded """"""""snapshot reporter"""""""" will capture the pattern of activity throughout a large ensemble of neurons at a time precisely defined by the triggering illumination, then drive expression of effector genes to mark those cells and allow selective excitation, inhibition, or ablation to test their functional importance. A chimeric channelrhodopsin activatable by red light permits optogenetic excitation of deep neurons through the intact skull, but its peak wavelength should be further increased and its residual sensitivity to blue light suppressed. Optogenetic inhibition of synaptic release will be improved by a more efficient singlet-oxygen generating protein, and introducing a singlet- oxygen-sensing GFP to map the spatial extent of inhibition. Both optogenetic tools will be applied to dissect amygdalar circuits in fear conditioning. The singlet-oxygen generating protein can now be split into two complementary fragments that only become photoactive after being brought together by chimeric partners. This complementation system may allow protein-protein interactions and kinase and protease activity to be captured for subsequent visualization by electron microscopy. A genetically encoded tag that marks proteins made during a pharmacologically defined period may become applicable to image synthesis and degradation of proteins in intact brain, thanks to development of nanoparticles that deliver small molecule drugs across the blood-brain barrier. Such nanoparticles may also aid clinical drug delivery to the brain. Such techniques will be used to test a new hypothesis that very long-term memories such as fear conditioning are stored as the pattern of holes in the perineuronal net (PNN), a specialized extracellular matrix that envelops mature neurons and restricts synapse formation. The 3-D intertwining of PNN and synapses will be imaged by serial-section electron microscopy. Lifetimes of PNN vs. intrasynaptic components will be compared by pulse-chase 15N labeling in mice and 14C content in human cadaver brains. Genetically encoded indicators and anti-neoepitope antibodies should improve spatial and temporal resolution of the in vivo activity of proteases that locally erode PNN. New techniques including genetic knockouts, better pharmacological inhibitors, and the snapshot reporter should enable more precise inhibition or potentiation of PNN erosion to compare with behavioral consequences. Biosynthesis of PNN components and proteases will be imaged.

Public Health Relevance

This proposal aims to improve, develop, and test powerful new molecular techniques to monitor and manipulate dynamic signal transduction in neurons. Such techniques will be used to test a new hypothesis, that very long-term memories are stored in the pattern of holes in the perineuronal net, a coating that envelops mature neurons and synapses. Both aims would profoundly advance our understanding of how neurons encode and store information, with potential implications for ameliorating addiction, traumatic brain injury, and neurodegeneration.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Friedman, Beth; Whitney, Michael A; Savariar, Elamprakash N et al. (2018) Detection of Subclinical Arthritis in Mice by a Thrombin Receptor-Derived Imaging Agent. Arthritis Rheumatol 70:69-79
Petersen, Mark A; Ryu, Jae Kyu; Chang, Kae-Jiun et al. (2017) Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron 96:1003-1012.e7
Rodriguez, Erik A; Campbell, Robert E; Lin, John Y et al. (2017) The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem Sci 42:111-129
Sando, Richard; Bushong, Eric; Zhu, Yongchuan et al. (2017) Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission. Neuron 94:312-321.e3
Rodriguez, Erik A; Tran, Geraldine N; Gross, Larry A et al. (2016) A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 13:763-9
Glasgow, Heather L; Whitney, Michael A; Gross, Larry A et al. (2016) Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. Proc Natl Acad Sci U S A 113:12774-12779
Adams, Stephen R; Mackey, Mason R; Ramachandra, Ranjan et al. (2016) Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species. Cell Chem Biol 23:1417-1427
Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L et al. (2016) New Dioxaborolane Chemistry Enables [(18)F]-Positron-Emitting, Fluorescent [(18)F]-Multimodality Biomolecule Generation from the Solid Phase. Bioconjug Chem 27:1390-1399
Ngo, John T; Adams, Stephen R; Deerinck, Thomas J et al. (2016) Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat Chem Biol 12:459-65
Woodford, Clifford R; Frady, E Paxon; Smith, Richard S et al. (2015) Improved PeT molecules for optically sensing voltage in neurons. J Am Chem Soc 137:1817-24

Showing the most recent 10 out of 137 publications