Plasticity, the ability of the brain to modify itself in response to its environment, is fundamental to normal development and cognition. Changes in neural activation have important consequences and can interfere with normal plasticity. Traumatic brain injury (TBI) is the single largest cause of death and disability in children and young persons, and leads to developmental delays and cognitive deficits. Experimental studies have shown that perturbations of excitatory neurotransmission occur after TBI in the immature rat, and that these mechanisms may underlie subsequent impairments of environmental neuroplasticity. Recent investigations have delineated a dichotomous role for activation of the N-methyl-D-aspartate receptor (NMDAR), the predominant excitatory neurotransmitter receptor in the brain. Synaptic activation of NMDARs promotes plasticity and cell survival, while extrasynaptic activation impairs plasticity and enhances apoptotic neuronal death. This proposal hypothesizes that glutamatergic pharmacotherapy will restore disrupted molecular and physiological activation after developmental/pediatric TBI, and that treatment efficacy can be monitored using pharmacological MRI (phMRI) as a noninvasive biomarker. This goal will be achieved through the following three specific aims: 1) To measure the balance of critical molecular markers of plasticity and cell death, and establish the translational relationship between these mechanisms and quantifiable physiological functions such as regional cerebral blood volume changes (as measured using phMRI) and behavioral performance, 2) To enhance post-injury plasticity using D-cycloserine, an NMDAR co-agonist, and show specificity for this mechanism by blocking the DCS effect with an NMDAR antagonist, and 3) To restore experience-dependent plasticity after developmental TBI using rational glutamatergic pharmacotherapy. This basic science proposal has implications for future clinical/translational studies, particularly through the development of a noninvasive physiological biomarker (phMRI), and through treatment with an agent already approved for clinical use (D-cycloserine).

Public Health Relevance

Traumatic brain injury is the #1 cause of acquired death and disability in infants, children and adolescents, and results in long-lasting developmental deficits The majority of TBI occurs under the age of 20 years, and pediatric TBI is distinct in many ways from TBI in adults;however, research investigations and resources dedicated to studying basic mechanisms of recovery from developmental/pediatric TBI are few. Changes in brain neurotransmission play a critical role in the cognitive deficits seen after pediatric TBI. This stuy proposes to use existing medications that act on excitatory neurotransmitters to help restore disrupted brain functions after experimental TBI, and then measure the effectiveness of these therapies with both pharmacological MRI (a new type of functional brain imaging) and cognitive-behavioral testing.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS027544-15
Application #
8655912
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Bellgowan, Patrick S F
Project Start
1990-04-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
15
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Dennis, Emily L; Babikian, Talin; Giza, Christopher C et al. (2018) Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons. Neuroscientist 24:652-670
Dennis, Emily L; Babikian, Talin; Alger, Jeffry et al. (2018) Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS - Diffusion MRI study. Hum Brain Mapp :
Sta Maria, Naomi S; Reger, Maxine L; Cai, Yan et al. (2017) D-Cycloserine Restores Experience-Dependent Neuroplasticity after Traumatic Brain Injury in the Developing Rat Brain. J Neurotrauma 34:1692-1702
Dennis, Emily L; Rashid, Faisal; Jahanshad, Neda et al. (2017) A NETWORK APPROACH TO EXAMINING INJURY SEVERITY IN PEDIATRIC TBI. Proc IEEE Int Symp Biomed Imaging 2017:105-108
Dennis, Emily L; Faskowitz, Joshua; Rashid, Faisal et al. (2017) Diverging volumetric trajectories following pediatric traumatic brain injury. Neuroimage Clin 15:125-135
Harris, N G; Verley, D R; Gutman, B A et al. (2016) Bi-directional changes in fractional anisotropy after experiment TBI: Disorganization and reorganization? Neuroimage 133:129-143
Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G et al. (2016) Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res 1642:270-277
Reid, Aylin Y; Bragin, Anatol; Giza, Christopher C et al. (2016) The progression of electrophysiologic abnormalities during epileptogenesis after experimental traumatic brain injury. Epilepsia 57:1558-1567
Harris, N G; Verley, D R; Gutman, B A et al. (2016) Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis. Exp Neurol 277:124-138
Kamins, Joshua; Giza, Christopher C (2016) Concussion-Mild Traumatic Brain Injury: Recoverable Injury with Potential for Serious Sequelae. Neurosurg Clin N Am 27:441-52

Showing the most recent 10 out of 85 publications