This project will focus on the importance of neuronal synchrony and oscillation within the inferior olive, one of the two major afferent systems of the cerebellum. The inferior olive has the highest density of electrotonic synapses and gap junctions in the adult mammalian brain, but their function remains elusive. Our studies will employ a novel genetic tool involving a point-mutation in connexin36 - the protein that assembles neuronal gap junctions - that acts in a dominant-negative manner in vivo to prevent intrinsic connexin36 from assembling gap junctions in dendritic spines of olivary neurons. The basic working hypothesis is that electrotonic synapses among inferior olivary neurons are fundamental for cerebellar coordination of movement. There are four specific aims.
Aim I will determine whether inhibition of connexin36-mediated gap junctions blocks inferior olivary neurons' sub-threshold oscillations in membrane potential and remediates a pathological tremor.
Aim 2 will determine how inhibition of connexin36-mediated gap junctions within the inferior olive will alter synchrony and neuronal interaction within cerebellar cortex.
Aim 3 will determine whether inhibition of neuronal synchrony within the inferior olive will alter the timing and trajectory of a spatially-guided movement involving a conditioned tongue protrusion behavior.
Aim 4 will determine whether blockade of connexin36 mediated gap junctions within the inferior olive will prevent the death of Purkinje cells after brain ischemia. The research will provide fundamental information regarding the role of neuronal synchrony in motor control and for driving Purkinje cells into death after brain ischemia. Moreover, the research is likely to provide a greater understanding of essential tremor, which has been associated with pathological inferior olivary oscillation

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-3 (06))
Program Officer
Chen, Daofen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Turecek, Josef; Han, Victor Z; Cuzon Carlson, Verginia C et al. (2016) Electrical Coupling and Synchronized Subthreshold Oscillations in the Inferior Olive of the Rhesus Macaque. J Neurosci 36:6497-502
Turecek, Josef; Yuen, Genevieve S; Han, Victor Z et al. (2014) NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron 81:1375-1388
Oristaglio, J; Hyman West, S; Ghaffari, M et al. (2013) Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning. Neuroscience 248:708-18
Fatemi, S Hossein; Aldinger, Kimberly A; Ashwood, Paul et al. (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777-807
Vianney-Rodrigues, Paulo; Iancu, Ovidiu D; Welsh, John P (2011) Gamma oscillations in the auditory cortex of awake rats. Eur J Neurosci 33:119-29
Welsh, John P; Han, Victor Z; Rossi, David J et al. (2011) Bidirectional plasticity in the primate inferior olive induced by chronic ethanol intoxication and sustained abstinence. Proc Natl Acad Sci U S A 108:10314-9
Placantonakis, Dimitris G; Bukovsky, Anatoly A; Aicher, Sue A et al. (2006) Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J Neurosci 26:5008-16
Welsh, John P; Yamaguchi, Hidetoshi; Zeng, Xiao-Hui et al. (2005) Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci U S A 102:17166-71
Welsh, John P; Ahn, Edward S; Placantonakis, Dimitris G (2005) Is autism due to brain desynchronization? Int J Dev Neurosci 23:253-63
Placantonakis, Dimitris G; Bukovsky, Anatoly A; Zeng, Xiao-Hui et al. (2004) Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci U S A 101:7164-9

Showing the most recent 10 out of 24 publications