Sleep is of central importance to neurobiology because to understand how the brain works, we will have to decipher the mechanisms and functions of sleep. The function(s) of sleep remain unknown and the humoral and neural mechanisms of sleep are incompletely understood. Most people intuitively recognize that sleep increases after sleep loss or during the course of an infection. There is much evidence that those sleep responses, as well as physiological sleep, are regulated, in part, by humoral mechanisms. We hypothesize that tumor necrosis factor alpha (TNF-alpha) is one of the key substances in sleep regulation. This hypothesis is based on studies showing: 1) TNF-alpha induces non-rapid eye movement sleep (NREMS); 2) inhibition of TNF-alpha inhibits spontaneous sleep and sleep responses induced by sleep loss or bacterial products; 3) TNF mRNA and TNF brain levels correlate with sleep propensity; 4) in humans, circulating TNF levels correlate with electroencephalogram slow-wave activity and increase after sleep loss or during several pathologies with associated fatigue, e.g., sleep apnea, rheumatoid arthritis, pre-eclampsia, multiple sclerosis. The proposed experiments seek to understand in mechanistic detail how TNF-alpha is involved in sleep regulation. We will determine whether blocking TNF-alpha or TNF-alpha production centrally attenuates systemic TNF-alpha-induced sleep responses; preliminary data show that vagotomy attenuates systemic TNF-alpha-induced NREMS (Specific Aim #1). We will investigate TNF-alpha regulation of NREMS within specific TNF-active sites in brain (Specific Aim #2). Preliminary data indicate that microinjection of TNF-alpha into the preoptic area enhances NREMS, whereas microinjection of an inhibitor of TNF-alpha reduces NREMS. Pharmacologic blockage of prostaglandins, adenosine, and interleukin-1, and sleep manipulation using sleep deprivation and acute mild increases in ambient temperature to enhance sleep, will be combined with microinjections of TNF-alpha or TNF-alpha inhibitors. We will also use gene arrays to determine the time course of sleep-sensitive changes in brain for TNF and TNF superfamily member mRNAs. Anticipated results will provide molecular-mechanistic advances to understand sleep regulation as well as aid our general understanding of cytokine regulation in the brain. We anticipate that results will be directly relevant to therapeutics, e.g., a TNF soluble receptor has already been shown to reduce fatigue associated with rheumatoid arthritis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS031453-11
Application #
6637357
Study Section
Special Emphasis Panel (ZRG1-IFCN-3 (01))
Program Officer
Mitler, Merrill
Project Start
1993-08-01
Project End
2005-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
11
Fiscal Year
2003
Total Cost
$362,500
Indirect Cost
Name
Washington State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping et al. (2013) Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-? and lipopolysaccharide in mice. Sleep 36:1227-38, 1238A
Ingiosi, Ashley M; Opp, Mark R; Krueger, James M (2013) Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol 23:806-11
Jewett, Kathryn A; Krueger, James M (2012) Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm 89:241-57
Davis, Christopher J; Krueger, James M (2012) Sleep and Cytokines. Sleep Med Clin 7:517-527
Davis, Christopher J; Clinton, James M; Krueger, James M (2012) MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol 113:1756-62
Taishi, Ping; Davis, Christopher J; Bayomy, Omar et al. (2012) Brain-specific interleukin-1 receptor accessory protein in sleep regulation. J Appl Physiol 112:1015-22
Zielinski, Mark R; Taishi, Ping; Clinton, James M et al. (2012) 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur J Neurosci 35:1789-98
Krueger, James M (2012) TRANSLATION OF BRAIN ACTIVITY INTO SLEEP. Hirosaki Igaku 63:S1-S16
Hodgson, Nicole R; Bohnet, Stewart G; Majde, Jeannine A et al. (2012) Influenza virus pathophysiology and brain invasion in mice with functional and dysfunctional Mx1 genes. Brain Behav Immun 26:83-9
Krueger, James M; Tononi, Giulio (2011) Local use-dependent sleep; synthesis of the new paradigm. Curr Top Med Chem 11:2490-2

Showing the most recent 10 out of 126 publications