- The broad, long-term aim of our research is to understand how neurotransmitters activate receptor-coupled ion channels of the Cys-loop superfamily. Focusing on the acetylcholine receptor (AChR) at the motor synapse, we address the central question of how ACh binding triggers opening of an ion channel intrinsic to the AChR. Toward understanding the binding-triggering process, we propose to (i) determine how residues at the junction of binding and pore domains link agonist binding to channel gating, (ii) delineate a comprehensive reaction mechanism underlying AChR activation, (iii) identify structures at subunit interfaces that mediate inter-subunit global coupling, and (iv) develop a water-soluble AChR ligand binding domain for studies of structure and ligand recognition. The approach combines site-directed mutagenesis, naturally-occurring mutations, single channel kinetic analysis, structural modeling, computational methods and protein biochemical and structural methods. Completion of the proposal will advance understanding of synaptic transmission and drug action at motor endplates, facilitate treatment of inherited disorders of synaptic receptors, while the general principles will provide insight into how structure gives rise to mechanism for other members of the Cys-loop receptor superfamily. Project narrative- Throughout the nervous system, moment-to-moment communication relies on post-synaptic receptors to detect nerve-released neurotransmitter and change the membrane potential. The change in membrane potential elicits a response in the receptive cell, such as muscle contraction, neuro-secretion or a change in excitability and thus altered communication with other cells. In many neurological diseases and drug addiction the interaction between neurotransmitter and post- synaptic receptor is altered, which if understood, could provide bases for rational therapy. Furthermore, many clinically useful drugs act on post-synaptic receptors, but often have unwanted side effects. Understanding both structures and molecular mechanisms of post-synaptic receptors would enable design of more specific drugs.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Silberberg, Shai D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Shen, Xin-Ming; Brengman, Joan M; Shen, Shelley et al. (2018) Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ?-subunit. JCI Insight 3:
Bouzat, Cecilia; Sine, Steven M (2018) Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 175:1789-1804
Mukhtasimova, Nuriya; Sine, Steven M (2018) Full and partial agonists evoke distinct structural changes in opening the muscle acetylcholine receptor channel. J Gen Physiol 150:713-729
Mazzaferro, Simone; Bermudez, Isabel; Sine, Steven M (2017) ?4?2 Nicotinic Acetylcholine Receptors: RELATIONSHIPS BETWEEN SUBUNIT STOICHIOMETRY AND FUNCTION AT THE SINGLE CHANNEL LEVEL. J Biol Chem 292:2729-2740
Mukhtasimova, Nuriya; daCosta, Corrie J B; Sine, Steven M (2016) Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR. J Gen Physiol 148:43-63
Shen, Xin-Ming; Brengman, Joan; Neubauer, David et al. (2016) Investigation of Congenital Myasthenia Reveals Functional Asymmetry of Invariant Acetylcholine Receptor (AChR) Cys-loop Aspartates. J Biol Chem 291:3291-301
Engel, Andrew G; Shen, Xin-Ming; Selcen, Duygu et al. (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:420-34
daCosta, Corrie J B; Free, Chris R; Sine, Steven M (2015) Stoichiometry for ?-bungarotoxin block of ?7 acetylcholine receptors. Nat Commun 6:8057
Sine, Steven M; Huang, Sun; Li, Shu-Xing et al. (2013) Inter-residue coupling contributes to high-affinity subtype-selective binding of ?-bungarotoxin to nicotinic receptors. Biochem J 454:311-21
Huang, Sun; Li, Shu-Xing; Bren, Nina et al. (2013) Complex between ?-bungarotoxin and an ?7 nicotinic receptor ligand-binding domain chimaera. Biochem J 454:303-310

Showing the most recent 10 out of 91 publications