GABAA receptors (GABARs) are the primary mediators of fast inhibitory synaptic transmission and tonic extrasynaptic inhibition. Synaptic GABARs are composed of 1, 2, and 32 subunits while extrasynaptic GABARs are generally composed of 1, 2, and 4 subunits. Mutations and variants in GABAR 32 and 4 subunit genes have recently been associated with idiopathic generalized epilepsies (IGEs). Our long-term goals are to understand how these mutations and variants disrupt the normal assembly, surface trafficking, synaptic and extrasynaptic targeting, and surface stability of GABARs;to characterize the effects of these mutations on GABAR functional properties;and ultimately, to provide a mechanistic foundation for development of novel therapeutic strategies. Hypotheses to be tested are: 1) Assembly, trafficking, and functional properties of synaptic 1(1,2,3,4)2232 GABARs have strict subunit and cellular requirements;2) Assembly, trafficking, and functional properties of extrasynaptic 1(1,4)224 and 152232 GABARs have strict subunit and cellular requirements;and 3) 32 subunit mutations and 4 subunit variants promote neuronal hyperexcitability by altering assembly, surface trafficking, and/or function of synaptic 1(1,2,3,4)2232 and extrasynaptic 1(1,4)224 and 152232 GABARs.
Specific aims are: 1) To determine how synaptic 1(1,2,3,4)2232 GABARs are assembled and trafficked to the cell surface and to characterize their functional properties;2) Specific Aim 2: To determine how extrasynaptic 1(1,4)224 and 152232 GABARs are assembled and trafficked to the cell surface and to characterize their functional properties;and 3) : To determine how 32 subunit mutations and 4 subunit variants associated with IGEs disrupt subunit assembly, trafficking, and/or functional properties of synaptic and extrasynaptic GABARs.
Epilepsy affects more than 0.5 % of the world's population and genetic factors play an important role in many generalized and in some partial epilepsies. At the present time there is treatment for genetic epilepsies with antiepileptic drugs but there is no cure. This proposal seeks to determine the basis for the genetic epilepsies associated with mutations in the inhibitory neurotransmitter GABAA receptor subunit genes that will provide a mechanistic foundation for development of novel therapeutic strategies.
Showing the most recent 10 out of 72 publications