This proposal examines the role of nitric oxide (NO) as a mediator of the cellular and molecular events that promote dilation in the cerebrovasculature. Nitric oxide synthases (NOS) are found within blood vessels and brain parenchyma, and both tissues are potential sources of NO. Linkages between NO, vasodilation and increases in relative cerebral blood flow (rCBF) during hypercapnia and brain metabolism have been established by experiments using L-arginine analogues that inhibit NOS. We propose to develop and characterize mutant mice that lack the neuronal NOS gene, KN (knock-out, neuronal) mice. Ongoing work in our laboratory is devoted to similar development of mice that lack the vascular NOS gene, KV (knock-out, vascular) mice. This molecular genetics approach allows us to distinguish between the relative contributions of the various NOS enzymes (neuronal vs. endothelial). We plan to use KN and KV mice to study the role of NO in normal rCBF regulation and during ischemia in intact animals. These are unique experiments that will supplement and extend existing pharmacological data intended to resolve existing controversies concerning whether NO mediates rCBF increases during physiological pertubations or pathophysiological events, whether neuronal or vascular pools mediate the responses, and whether neuronal and/or vascular NO determines tissue outcome in both focal and global ischemia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS033335-02
Application #
2272087
Study Section
Neurology A Study Section (NEUA)
Project Start
1994-09-01
Project End
1997-08-31
Budget Start
1995-09-01
Budget End
1996-08-31
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Turcot, Valérie (see original citation for additional authors) (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50:26-41
Pong, Terrence; Scherrer-Crosbie, Marielle; Atochin, Dmitriy N et al. (2014) Phosphomimetic modulation of eNOS improves myocardial reperfusion and mimics cardiac postconditioning in mice. PLoS One 9:e85946
Shin, Hwa Kyoung; Huang, Paul L; Ayata, Cenk (2014) Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. J Cereb Blood Flow Metab 34:284-7
Ayata, Cenk; Shin, Hwa Kyoung; Dileköz, Ergin et al. (2013) Hyperlipidemia disrupts cerebrovascular reflexes and worsens ischemic perfusion defect. J Cereb Blood Flow Metab 33:954-62
Kashiwagi, Satoshi; Atochin, Dmitriy N; Li, Qian et al. (2013) eNOS phosphorylation on serine 1176 affects insulin sensitivity and adiposity. Biochem Biophys Res Commun 431:284-90
Li, Qian; Atochin, Dmitriy; Kashiwagi, Satoshi et al. (2013) Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size. Stroke 44:3183-8
Tanigaki, Keiji; Vongpatanasin, Wanpen; Barrera, Jose A et al. (2013) C-reactive protein causes insulin resistance in mice through Fc? receptor IIB-mediated inhibition of skeletal muscle glucose delivery. Diabetes 62:721-31
Pointer, Mildred A; Daumerie, Geraldine; Bridges, LaKessha et al. (2012) Physiological stress increases renal injury in eNOS-knockout mice. Hypertens Res 35:318-24
MacLauchlan, Susan; Yu, Jun; Parrish, Marcus et al. (2011) Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proc Natl Acad Sci U S A 108:E1137-45
Newfell, Brenna G; Iyer, Lakshmanan K; Mohammad, Najwa N et al. (2011) Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler Thromb Vasc Biol 31:1871-80

Showing the most recent 10 out of 80 publications