Autism is a complex disorder of early onset, involving odd and repetitive movements, severe social disability, deficits in social cognition, and disruption of language. While the multiple signs and symptoms in autism suggest several different brain systems are likely involved in its pathobiology, it remains the fact that most efforts aimed at the analysis of neuroanatomical structure related to autism from (primarily Magnetic Resonance (MR) images have been limited to the measurement of rather gross features, such as overall brain size and cross sectional area, or measurements of the corpus callosum and cerebellar vermis, using fairly small samples. These limitations are in large part because, to date, manual and computer-assisted, semi-automated segmentation/measurement of neuroanatomy is a tedious, labor-intensive, and costly process, subject to human variability. The research proposed here is aimed at the further development of an image analysis strategy that will accurately, reproducibly, robustly and efficiently analyze neuroanatomical structure relevant to autism from 3D high resolution MR images. At the core of this effort are unique mathematical approaches to: i.) segment cortical structure using coupled differential equations to simultaneously locate the gray/white and gray/CSF surfaces; ii.) segment subcortical structure by adding shape and inter-structure spatial relationship priors to an approach that integrates boundary finding and region growing; and iii.) nonlinearly register regional neuroanatomical structure to create atlases and match them to segmented information for the purpose of labeling cortical gyri and guiding the subcortical segmentation process. A key feature of the approach is that the final labeling and measurement that is performed is done by carefully focusing on individual regions of the brain, one at a time. The accuracy and robustness of the individual algorithm components to imaging parameters, field inhomogeneities and noise will be demonstrated by validating segmentation, registration, labeling and measurement algorithm results from synthetic data created using an MR image simulator against gold standard source images. The utility of the image analysis strategy for deriving robust, accurate measures in a variety of cortical and subcortical brain regions relevant to autism will be evaluated by running the algorithm on a cohort of 30 normal control and 30 subjects having autism and/or related conditions, sampled from a large, well characterized and separately NIH-funded subject database.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS035193-05
Application #
6187298
Study Section
Special Emphasis Panel (ZRG1-RNM (01))
Program Officer
Hirtz, Deborah G
Project Start
1996-06-01
Project End
2003-08-31
Budget Start
2000-09-01
Budget End
2001-08-31
Support Year
5
Fiscal Year
2000
Total Cost
$253,480
Indirect Cost
Name
Yale University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Dvornek, Nicha C; Ventola, Pamela; Duncan, James S (2018) COMBINING PHENOTYPIC AND RESTING-STATE FMRI DATA FOR AUTISM CLASSIFICATION WITH RECURRENT NEURAL NETWORKS. Proc IEEE Int Symp Biomed Imaging 2018:725-728
van Noordt, Stefon; Wu, Jia; Venkataraman, Archana et al. (2017) Inter-trial Coherence of Medial Frontal Theta Oscillations Linked to Differential Feedback Processing in Youth and Young Adults with Autism. Res Autism Spectr Disord 37:1-10
Lei, Jiedi; Sukhodolsky, Denis G; Abdullahi, Sebiha M et al. (2017) Brief report: Reduced anxiety following Pivotal Response Treatment in young children with Autism Spectrum Disorder. Res Autism Spectr Disord 43-44:1-7
Ventola, Pamela; Lei, Jiedi; Paisley, Courtney et al. (2017) Parenting a Child with ASD: Comparison of Parenting Style Between ASD, Anxiety, and Typical Development. J Autism Dev Disord 47:2873-2884
Yang, Y J Daniel; Allen, Tandra; Abdullahi, Sebiha M et al. (2017) Brain responses to biological motion predict treatment outcome in young adults with autism receiving Virtual Reality Social Cognition Training: Preliminary findings. Behav Res Ther 93:55-66
Dvornek, Nicha C; Ventola, Pamela; Pelphrey, Kevin A et al. (2017) Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks. Mach Learn Med Imaging 10541:362-370
Yang, D; Pelphrey, K A; Sukhodolsky, D G et al. (2016) Brain responses to biological motion predict treatment outcome in young children with autism. Transl Psychiatry 6:e948
Venkataraman, Archana; Yang, Daniel Y-J; Pelphrey, Kevin A et al. (2016) Bayesian Community Detection in the Space of Group-Level Functional Differences. IEEE Trans Med Imaging 35:1866-82
Venkataraman, Archana; Yang, Daniel Y-J; Dvornek, Nicha et al. (2016) Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder. Neuroreport 27:1081-5
Venkataraman, Archana; Yang, Daniel; Pelphrey, Kevin et al. (2016) Bayesian Community Detection in the Space of Group-Level Functional Differences. IEEE Trans Med Imaging :

Showing the most recent 10 out of 36 publications