Seizures induced by fever are common in the infant and young child. Whether they result in neuronal death and subsequent temporal lobe epilepsy is controversial. Experimental models for febrile seizures used to date have involved older animals, or were unsuitable for long-term studies. Work by the applicant has established an infant rat paradigm of hyperthermia-induced seizures which is age-appropriate and suitable for long-term studies. This model will be used to test the following hypotheses: (1). Hyperthermic seizures result in injury of select limbic neurons, particularly in the central and lateral amygdaloid nuclei. (2). This neuronal injury is mediated by the neuroexcitatory peptide, corticotropin releasing hormone (CRH). To define the distribution and characterize the types of neurons injured, brains will be examined at several time-points following the induction of hyperthermic seizures. Neuronal injury will be determined based on altered staining properties of affected cells. Concurrent experiments will test the hypothesis proposed for the mechanism of this neuronal injury: If neuronal injury produced by hyperthermic seizures is mediated by CRH then i). these seizures should increase the levels of CRH in the involved brain regions and ii). the injury should be prevented by the administration of CRH antagonists. Furthermore, the long-term effects of hyperthermic seizures during infancy on the development of spontaneous seizures (epilepsy) in adulthood will be determined. The proposed studies establish a long-term model for the study of febrile seizures in the infant, a model which had been pursued by investigators focusing on Developmental Epilepsy Research for close to two decades. These studies should yield fundamentally important information regarding the pathogenesis of non-genetic human developmental epilepsies, of which febrile seizures are the most prevalent. The results of the proposed studies may have significant implications for the current management of these seizures in human infants, and could lead to a more aggressive approach to febrile seizures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS035439-02
Application #
2685741
Study Section
Neurological Sciences Subcommittee 1 (NLS)
Program Officer
Jacobs, Margaret
Project Start
1997-04-01
Project End
2001-03-31
Budget Start
1998-04-01
Budget End
1999-03-31
Support Year
2
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Pediatrics
Type
Schools of Medicine
DUNS #
161202122
City
Irvine
State
CA
Country
United States
Zip Code
92697
Curran, Megan M; Haddad, Elizabeth; Patterson, Katelin P et al. (2018) Epilepsy-predictive magnetic resonance imaging changes following experimental febrile status epilepticus: Are they translatable to the clinic? Epilepsia 59:2005-2018
Patterson, Katelin P; Barry, Jeremy M; Curran, Megan M et al. (2017) Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor. J Neurosci 37:3799-3812
Hall, Alicia M; Brennan, Gary P; Nguyen, Tiffany M et al. (2017) The Role of Sirt1 in Epileptogenesis. eNeuro 4:
Gunn, B G; Baram, T Z (2017) Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 40:667-679
Brennan, Gary P; Dey, Deblina; Chen, Yuncai et al. (2016) Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Rep 14:2402-12
Brennan, Gary P; Baram, Tallie Z; Poolos, Nicholas P (2016) Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harb Perspect Med 6:a022384
Patterson, Katelin P; Brennan, Gary P; Curran, Megan et al. (2015) Rapid, Coordinate Inflammatory Responses after Experimental Febrile Status Epilepticus: Implications for Epileptogenesis. eNeuro 2:
Patterson, Katelin P; Baram, Tallie Z; Shinnar, Shlomo (2014) Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics 11:242-50
McClelland, Shawn; Brennan, Gary P; Dubé, Celine et al. (2014) The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife 3:e01267
Choy, ManKin; Dubé, Celine M; Patterson, Katelin et al. (2014) A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci 34:8672-84

Showing the most recent 10 out of 50 publications