Turner syndrome (TS) is a human genetic disorder involving females who lack all or part of one X chromosome. Classic TS features include short stature, infertility, and anatomic abnormalities. More recently, characteristic neurocognitive deficits in nonverbal domains such as visual-spatial abilities have been recognized as part of the syndrome. Our original grant proposed to map loci responsible for specific TS cognitive and physical features by collecting a large number of subjects with heterogeneous X chromosome deletions, mapping the deletions using molecular methods, and thoroughly analyzing associated phenotypes. Rigorous statistical analysis showed that deletions of certain regions of the short arm of the X chromosome were associated with specific TS phenotypes, including neurocognitive deficits, short stature, and ovarian failure. Cognitive and physical aspects of the phenotype were dissociable. We narrowed the location of gene(s) responsible for a major component of the TS neurocognitive phenotype to an interval of the distal short arm (Xp) spanning only ~1% of the X chromosome. This same interval has been previously shown to contain a gene termed SHOX, deletions or mutations of which cause short stature and other TS skeletal abnormalities. Following the paradigm of Williams syndrome, another complex genetic disorder with characteristic physical and cognitive phenotypes, we reasoned that TS represents a genetic and phenotypic continuum associated with X chromosome deletions. Furthermore, physical phenotypes associated with SHOX deletions could be used to ascertain a population of subjects with small distal Xp deletions in and around the TS neurocognitive critical region without bias with regard to their neurocognitive phenotypes. Fine-mapping these subjects' deletions will allow us to narrow the TS neurocognitive critical region to a specific gene(s). Furthermore, characterizing the neurocognitive profile of subjects with SHOX point mutations or distal Xp deletions limited just to SHOX will allow us to critically test whether this known TS gene also plays a role in the neurocognitive phenotype. The proposed study takes advantage of our existing clinical collaborations as well as large referral populations for SHOX-associated disorders in Dallas and Philadelphia to obtain a sufficient sample size of unrelated distal Xp deletion subjects for rigorous statistical analyses. The project will combine molecular characterization of subjects with detailed cognitive evaluations to elucidate the role of SHOX or other pseudoautosomal gene deficiencies in the TS neurocognitive phenotype.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
3R01NS035554-08S1
Application #
6936736
Study Section
Biobehavioral and Behavioral Processes 3 (BBBP)
Program Officer
Leblanc, Gabrielle G
Project Start
1997-03-01
Project End
2007-07-31
Budget Start
2004-08-01
Budget End
2005-07-31
Support Year
8
Fiscal Year
2004
Total Cost
$59,714
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Gordon, Derek; Zinn, Andrew R (2009) Computing power of quantitative trait locus association mapping for haploid loci. BMC Bioinformatics 10:261
Zinn, Andrew R; Kushner, Harvey; Ross, Judith L (2008) EFHC2 SNP rs7055196 is not associated with fear recognition in 45,X Turner syndrome. Am J Med Genet B Neuropsychiatr Genet 147B:507-9
Simon, T J; Takarae, Y; DeBoer, T et al. (2008) Overlapping numerical cognition impairments in children with chromosome 22q11.2 deletion or Turner syndromes. Neuropsychologia 46:82-94
Campos-Barros, Angel; Benito-Sanz, Sara; Ross, Judith L et al. (2007) Compound heterozygosity of SHOX-encompassing and downstream PAR1 deletions results in Langer mesomelic dysplasia (LMD). Am J Med Genet A 143A:933-8
Bondy, Carolyn A; Matura, Lea Ann; Wooten, Nicole et al. (2007) The physical phenotype of girls and women with Turner syndrome is not X-imprinted. Hum Genet 121:469-74
Russell, Heather F; Wallis, Deeann; Mazzocco, Michele M M et al. (2006) Increased prevalence of ADHD in Turner syndrome with no evidence of imprinting effects. J Pediatr Psychol 31:945-55
Van, Phillip L; Bakalov, Vladimir K; Zinn, Andrew R et al. (2006) Maternal X chromosome, visceral adiposity, and lipid profile. JAMA 295:1373-4
Zinn, Andrew R; Ramos, Purita; Ross, Judith L (2006) A second recombination hotspot associated with SHOX deletions. Am J Hum Genet 78:523-5
Ross, Judith L; Kowal, Karen; Quigley, Charmian A et al. (2005) The phenotype of short stature homeobox gene (SHOX) deficiency in childhood: contrasting children with Leri-Weill dyschondrosteosis and Turner syndrome. J Pediatr 147:499-507
Ross, Judith L; Bellus, Gary; Scott Jr, Charles I et al. (2003) Mesomelic and rhizomelic short stature: The phenotype of combined Leri-Weill dyschondrosteosis and achondroplasia or hypochondroplasia. Am J Med Genet A 116A:61-5

Showing the most recent 10 out of 22 publications