Malignant astrocytomas are among the most common and deadly brain tumors of childhood. Most affected children die within several years of diagnosis, despite current treatments; however, 20 to 30% respond favorably to therapy and are cured. The basis for these diverse outcomes has been enigmatic, even taking into account clinical and histological factors. In preliminary studies with an institutional cohort of pediatric gliomas, we observed that molecular markers could supplement histological data to refine prognostic assessments. Based on these findings, we began a more extensive study of the cohort of Children's Cancer Group study CCG-945, the largest group of pediatric high-grade gliomas accrued to date. During the prior funding period, specimens from 155 tumors were evaluated in histological and genotyping studies of a broad panel of molecular markers. These studies showed a striking association between outcome and both p53 mutation/overexpression status and MIB1 proliferation index, independent of clinical or histological factors; identified significant differences between molecular features of childhood and adult gliomas; and generated a sizeable resource of microdissected tumor tissue for further analyses. The proposed studies will use this unique resource along with specimens from two new Children's Oncology Group high-grade glioma cohorts (each with 100 patients), in all cases treated with alkylator based chemotherapy, to examine the contribution to treatment response of two of the principal molecular determinants of alkylator resistance, O6-alkylguanine-DNA alkyltransferase (AGT) and mismatch repair (MMR), in the context of other molecular features. We hypothesize that categorization of these tumors by their genomic alterations and resistance phenotype will improve accuracy of prognostic assessments, and reveal patterns of abnormalities distinct from adult gliomas. To test these hypotheses, we propose studies with the following aims: 1) Determine whether genomic alterations affecting p53 function in pediatric highgrade gliomas correlate with therapeutic outcome in the context of other prognostic factors. 2) Examine the association of expression and promoter methylation of AGT with progression-free survival. 3) Assess the frequency and prognostic relevance of microsatellite instability as a correlate of defective mismatch repair in tumor versus paired normal tissue. These markers will be evaluated in the context of conventional prognostic factors, such as histology, to determine their utility for biologically classifying childhood malignant gliomas. Relevance: Taken together, the proposed studies will provide new insights into the molecular categorization of pediatric high-grade gliomas. This work will establish a foundation for risk-adapted stratification and treatment planning for children with these tumors. ? ? ? ? ? ? ?

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Fountain, Jane W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Bouffet, Eric; Allen, Jeffrey C; Boyett, James M et al. (2016) The influence of central review on outcome in malignant gliomas of the spinal cord: the CCG-945 experience. J Neurosurg Pediatr 17:453-9
Nikiforova, Marina N; Wald, Abigail I; Melan, Melissa A et al. (2016) Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro Oncol 18:379-87
Jakacki, Regina I; Cohen, Kenneth J; Buxton, Allen et al. (2016) Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro Oncol 18:1442-50
Eisenstat, David D; Pollack, Ian F; Demers, Alain et al. (2015) Impact of tumor location and pathological discordance on survival of children with midline high-grade gliomas treated on Children's Cancer Group high-grade glioma study CCG-945. J Neurooncol 121:573-81
Batra, Vandana; Sands, Stephen A; Holmes, Emi et al. (2014) Long-term survival of children less than six years of age enrolled on the CCG-945 phase III trial for newly-diagnosed high-grade glioma: a report from the Children's Oncology Group. Pediatr Blood Cancer 61:151-7
Joshi, Kaushal; Banasavadi-Siddegowda, Yeshavanth; Mo, Xiaokui et al. (2013) MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 31:1051-63
Mao, Ping; Joshi, Kaushal; Li, Jianfeng et al. (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110:8644-9
Pollack, Ian F; Jakacki, Regina I; Butterfield, Lisa H et al. (2013) Ependymomas: development of immunotherapeutic strategies. Expert Rev Neurother 13:1089-98
Horbinski, Craig; Nikiforova, Marina N; Hagenkord, Jill M et al. (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14:777-89
Cohen, Kenneth J; Pollack, Ian F; Zhou, Tianni et al. (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol 13:317-23

Showing the most recent 10 out of 40 publications