Epilepsy is a common and disabling condition that frequently begins in infancy and childhood. The cellular and molecular changes that underlie the development of epilepsy (epileptogenesis) are not fully understood. GABAA receptors (GABARs) are the most abundant inhibitory neurotransmitter receptors in forebrain, and several lines of evidence indicate that alterations in these receptors may play a critical role in epileptogenesis. During the initial funding period of this grant, we demonstrated long-term, age-specific changes in expression of GABAR subunits in hippocampal dentate granule neurons (DGNs) following lithium-pilocarpine induced status epilepticus (SE) during early postnatal development. To fully understand the importance of these GABAR alterations in developmental epileptogenesis, however, we must determine 1) if these changes precede development of epilepsy or are a response to ongoing seizure activity, 2) if these changes occur in other developmental models of epilepsy and other regions of the hippocampus, and 3) if these changes are a critical determinant of later epilepsy development. In our first competitive renewal, studies are proposed to address these three fundamental questions. We will determine whether SE-induced changes in GABAR subunit expression precede or follow onset of epilepsy and if manipulation of GABAR subunit expression alters the frequency of epilepsy development. We will also expand our studies to examine GABAR subunit expression following early-life SE in two additional developmental epilepsy models (kainic acid-induced seizures and hyperthermia-induced seizures) and in three different regions of the hippocampus (CA1 and CA3 regions in addition to dentate gyrus). The proposed studies are expected to provide evidence that hippocampal GABAR subunit changes occur in a variety of developmental epilepsy models, precede onset of spontaneous seizures and play a critical role in the process of epileptogenesis after early-life SE. Results of these studies should advance our understanding of the role of GABAR changes in developmental epileptogenesis and facilitate development of new therapies for the prevention or cure of epilepsy after early-life insults by identifying potential new therapeutic targets. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS038595-08
Application #
7154048
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Stewart, Randall R
Project Start
1999-04-01
Project End
2009-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
8
Fiscal Year
2007
Total Cost
$363,983
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Scharfman, Helen E; Brooks-Kayal, Amy R (2014) Is plasticity of GABAergic mechanisms relevant to epileptogenesis? Adv Exp Med Biol 813:133-50
Simonato, Michele; Brooks-Kayal, Amy R; Engel Jr, Jerome et al. (2014) The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 13:949-60
Pitkänen, Asla; Nehlig, Astrid; Brooks-Kayal, Amy R et al. (2013) Issues related to development of antiepileptogenic therapies. Epilepsia 54 Suppl 4:35-43
Brooks-Kayal, Amy R; Bath, Kevin G; Berg, Anne T et al. (2013) Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54 Suppl 4:44-60
Chapman, Kevin E; Raol, Yogendra H; Brooks-Kayal, Amy (2012) Neonatal seizures: controversies and challenges in translating new therapies from the lab to the isolette. Eur J Neurosci 35:1857-65
Baram, Tallie Z; Jensen, Frances E; Brooks-Kayal, Amy (2011) Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 11:21-6
Gonzalez, Marco I; Brooks-Kayal, Amy (2011) Altered GABA(A) receptor expression during epileptogenesis. Neurosci Lett 497:218-22
Brooks-Kayal, Amy (2011) Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia 52 Suppl 1:13-20
Frye, Cheryl A; Rhodes, Madeline E; Raol, YogendraSinh H et al. (2006) Early postnatal stimulation alters pregnane neurosteroids in the hippocampus. Psychopharmacology (Berl) 186:343-50
Raol, Yogendrasinh H; Zhang, Guojun; Lund, Ingrid V et al. (2006) Increased GABA(A)-receptor alpha1-subunit expression in hippocampal dentate gyrus after early-life status epilepticus. Epilepsia 47:1665-73

Showing the most recent 10 out of 21 publications