Stem cells have the potential to treat and possibly cure a variety of disorders, particularly those of the central nervous system (CNS). To develop successful clinical therapies, the fate of these cells after grafting must be monitored in a noninvasive manner. Currently, there is a need to develop in vivo means to track transplanted cells to determine their survival and migration patterns. By attaching a magnetic tag to stem cells, we propose to follow their biodistribution in vivo using MR imaging. We hypothesize that MR monitoring of the extent of cell migration, including the local distribution within the CNS, will allow for optimization of stem cell transplantation protocols, and that the same strategy may eventually be pursued in humans. Specifically, we will label bone marrow stem cells and neural stem cells obtained from mouse embryonic stem (ES) cell lines.
Our first aim i s to optimize the magnetic labeling procedure using superparamagnetic iron oxides that are coated with a transfection agent. Following magnetic tagging, we will then graft labeled cells into the CNS or inject cells systemically into the following four animal models of neurodegenerative disease: a) Long Evans shaker rat model of dysmyelination (aim 2); b) Twitcher mouse model of globoid cell leukodystrophy (aim 3); c) Sindbis virus rat model of lower motor neuron disease (aim 4); and d) mouse model of Parkinson's disease (aim 5). These models are believed to represent human CNS diseases that are likely candidates for future stem cell therapy. Using serial MR imaging of the same animal over time, unique information on the spatial temporal dynamics of cell migration can be obtained. Specifically, we aim to correlate the obtained MR contrast images with conventional histopathologic labeling and staining techniques for each differentiated cell type, to determine the extent of new myelination or dopaminergic neuron formation and the potential improvement in animal behavior. Upon the completion of our studies, we expect to demonstrate that MR tracking of magnetically labeled stem cells is a valid new technology for studying stem cell based therapies in the CNS, setting the stage for applying this technique in a clinical setting.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS045062-04
Application #
6995378
Study Section
Diagnostic Radiology Study Section (RNM)
Program Officer
Pancrazio, Joseph J
Project Start
2002-12-15
Project End
2007-11-30
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
4
Fiscal Year
2006
Total Cost
$452,951
Indirect Cost
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Liang, Yajie; Zhang, Jiangyang; Walczak, Piotr et al. (2018) Quantification of motor neuron loss and muscular atrophy in ricin-induced focal nerve injury. J Neurosci Methods 308:142-150
Kim, Taeho; Lee, Nohyun; Arifin, Dian R et al. (2017) In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly-L-Lysine Nanocomplexes. Adv Funct Mater 27:
Lyczek, Agatha; Arnold, Antje; Zhang, Jiangyang et al. (2017) Transplanted human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Exp Neurol 291:74-86
Srivastava, Amit K; Gross, Sarah K; Almad, Akshata A et al. (2017) Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 289:96-102
Chehade, Moussa; Srivastava, Amit K; Bulte, Jeff W M (2016) Co-Registration of Bioluminescence Tomography, Computed Tomography, and Magnetic Resonance Imaging for Multimodal In Vivo Stem Cell Tracking. Tomography 2:159-165
Srivastava, Amit K; Bulte, Camille A; Shats, Irina et al. (2016) Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Exp Neurol 275 Pt 1:154-61
Tang, Yaohui; Zhang, Chunfu; Wang, Jixian et al. (2015) MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. Adv Funct Mater 25:1024-1034
Andrzejewska, Anna; Nowakowski, Adam; Janowski, Miroslaw et al. (2015) Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 10:5543-59
Bar-Shir, Amnon; Liang, Yajie; Chan, Kannie W Y et al. (2015) Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chem Commun (Camb) 51:4869-71
Srivastava, Amit K; Kadayakkara, Deepak K; Bar-Shir, Amnon et al. (2015) Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 8:323-36

Showing the most recent 10 out of 92 publications