Laminin is important for peripheral nerve development and myelination. Laminin mutants cause a dysmyelinating neuropathy in man (congenital muscular dystrophy, CMD) and mouse (dystrophic, dy) that manifests both impaired Schwann cell-axon interactions and altered myelination. The molecules that transduce laminin effects in Schwann cells, and the pathomechanisms of laminin mutants remain largely unknown. We have identified several laminin receptors in myelin-forming Schwann cells and shown that they are differentially expressed across peripheral nerve development, suggesting that they subserve differential roles. Our preliminary genetic analysis confirms this notion: Beta1integrin is required for establishing proper Schwann cell-axon relationships prior to birth, whereas dystroglycan is necessary for normal myelination after birth. The Beta1and dystroglycan-null morphological phenotypes suggest that these receptors normally link laminin to cytoskeletal rearrangements in Schwann cells. The overall goal of this proposal is to expand what is known of the molecular basis of laminin-cytoskeletal linkage in Schwann cells. ? ? We have produced or collected an unique group of conditional alleles and Cre transgenes that will allow us to disrupt singly or multiply all known major laminin receptors in Schwann cells of transgenic mice. ? ? Furthermore, imaging and biochemical analysis of Beta1integrin-null Schwann cells will elucidate how Beta1 directs cytoskeletal rearrangements. Proteomic analysis of Beta1integrin-null Schwann cell/neuron explants will identify candidate signal molecules that link laminin to the cytoskeletal alterations required for axonal interactions. This comprehensive approach will establish the role of the different laminin receptors in peripheral nerve, thereby clarifying the pathogenesis of CMD and dy mutations. The information produced by these experiments will collectively form a basis for developing treatment strategies of CMD and other hereditary neuropathies, and to promote nerve regeneration and remyelination in all neuropathies. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS045630-03
Application #
6937718
Study Section
Molecular, Cellular and Developmental Neurosciences 2 (MDCN)
Program Officer
Porter, John D
Project Start
2003-07-01
Project End
2007-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
3
Fiscal Year
2005
Total Cost
$230,850
Indirect Cost
Name
Fondazone Cent/San Raffaele/Del Monte
Department
Type
DUNS #
440850089
City
Milan
State
Country
Italy
Zip Code
20132
Poitelon, Yannick; Matafora, Vittoria; Silvestri, Nicholas et al. (2018) A dual role for Integrin ?6?4 in modulating hereditary neuropathy with liability to pressure palsies. J Neurochem 145:245-257
Ackerman, Sarah D; Luo, Rong; Poitelon, Yannick et al. (2018) GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med 215:941-961
Poitelon, Yannick; Feltri, M Laura (2018) The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes. Methods Mol Biol 1739:233-253
VerPlank, Jordan J S; Lokireddy, Sudarsanareddy; Feltri, M Laura et al. (2018) Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia 66:379-395
Ghidinelli, Monica; Poitelon, Yannick; Shin, Yoon Kyoung et al. (2017) Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biol 15:e2001408
Della-Flora Nunes, Gustavo; Mueller, Lauren; Silvestri, Nicholas et al. (2017) Acetyl-CoA production from pyruvate is not necessary for preservation of myelin. Glia 65:1626-1639
Sidoli, Mariapaola; Musner, Nicolò; Silvestri, Nicholas et al. (2016) Ablation of Perk in Schwann Cells Improves Myelination in the S63del Charcot-Marie-Tooth 1B Mouse. J Neurosci 36:11350-11361
Poitelon, Yannick; Lopez-Anido, Camila; Catignas, Kathleen et al. (2016) YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 19:879-87
Musner, Nicolò; Sidoli, Mariapaola; Zambroni, Desireè et al. (2016) Perk Ablation Ameliorates Myelination in S63del-Charcot-Marie-Tooth 1B Neuropathy. ASN Neuro 8:
Lopez-Anido, Camila; Poitelon, Yannick; Gopinath, Chetna et al. (2016) Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development. Hum Mol Genet 25:3055-3069

Showing the most recent 10 out of 65 publications