Laminin is important for peripheral nerve development and myelination. Laminin mutants cause a dysmyelinating neuropathy in man (congenital muscular dystrophy, CMD) and mouse (dystrophic, dy) that manifests both impaired Schwann cell-axon interactions and altered myelination. The molecules that transduce laminin effects in Schwann cells, and the pathomechanisms of laminin mutants remain largely unknown. We have identified several laminin receptors in myelin-forming Schwann cells and shown that they are differentially expressed across peripheral nerve development, suggesting that they subserve differential roles. Our preliminary genetic analysis confirms this notion: Beta1integrin is required for establishing proper Schwann cell-axon relationships prior to birth, whereas dystroglycan is necessary for normal myelination after birth. The Beta1and dystroglycan-null morphological phenotypes suggest that these receptors normally link laminin to cytoskeletal rearrangements in Schwann cells. The overall goal of this proposal is to expand what is known of the molecular basis of laminin-cytoskeletal linkage in Schwann cells. ? ? We have produced or collected an unique group of conditional alleles and Cre transgenes that will allow us to disrupt singly or multiply all known major laminin receptors in Schwann cells of transgenic mice. ? ? Furthermore, imaging and biochemical analysis of Beta1integrin-null Schwann cells will elucidate how Beta1 directs cytoskeletal rearrangements. Proteomic analysis of Beta1integrin-null Schwann cell/neuron explants will identify candidate signal molecules that link laminin to the cytoskeletal alterations required for axonal interactions. This comprehensive approach will establish the role of the different laminin receptors in peripheral nerve, thereby clarifying the pathogenesis of CMD and dy mutations. The information produced by these experiments will collectively form a basis for developing treatment strategies of CMD and other hereditary neuropathies, and to promote nerve regeneration and remyelination in all neuropathies. ? ? ?
Showing the most recent 10 out of 65 publications