REST/NRSF is a gene silencing transcription factor that is widely expressed during embryogenesis and plays a strategic role in terminal neuronal differentiation. In neural progenitors and non-neural cells, REST actively represses a large array of neural-specific genes important to synaptic plasticity and synaptic remodeling including those encoding synaptic vesicle proteins, structural proteins, voltage-sensitive ion channels, and the AMPAR subunit GluR2. As neurons differentiate, REST downregulation is essential for induction and maintenance of the neural phenotype. Perturbation of REST expression during embryogenesis results in cellular apoptosis, aberrant differentiation and patterning, and lethality. Dysregulation of REST and its target genes is implicated in the pathogenesis of Down's syndrome, Alzheimer's disease and some medulloblastomas. Global ischemia is a neurological disorder in which a brief neuronal insult induces selective, delayed death of hippocampal CA1 neurons. The substantial delay between insult and cell death is consistent with a role for transcriptional changes. Recent findings from this laboratory show that ischemic insults activate REST in neurons destined to die and implicate REST in global ischemia-induced neuronal death. The proposed research aims to study the role of the REST-initiated program of transcriptional changes in ischemia. The AMPAR subunit GluR2, brain-derived neurotrophic factor (BDNF) and the u opioid receptor are known targets of REST and are implicated in the excitotoxic death associated with global ischemia. A focus will be REST-dependent silencing of GluR2 and p receptor gene expression and upregulation of BDNF expression. The underlying hypothesis is that global ischemia triggers de-repression of the gene silencing transcription factor REST, which initiates a program of gene transcriptional changes and that one or more REST target genes are critical players in global ischemia-induced neuronal death.
Specific Aims are 1) Examine activation of the REST repressor complex in post-ischemic CA1 neurons and determine whether REST is causally related to neuronal death. 2) Examine mechanisms by which REST alters target genes in post-ischemic neurons and determine whether REST-dependent chromatin remodeling is causally related to neuronal death; and 3) Identify novel REST target genes and determine whether they are causally related to neuronal death. Our findings are consistent with observations of transcriptional dysregulation in injured neurons and suggest that disruption of REST silencing has a critical role in the pathogenesis of global ischemia. The proposed research will impact on the development of new treatment strategies for intervention in global ischemia, a dehabilitating trauma that affects 200,000 Americans each year. This study has implications for research on other disorders including epilepsy, stroke, traumatic brain injury, spinal cord injury and Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS046742-04
Application #
7187373
Study Section
Neurodegeneration and Biology of Glia Study Section (NDBG)
Program Officer
Golanov, Eugene V
Project Start
2004-03-01
Project End
2009-02-28
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
4
Fiscal Year
2007
Total Cost
$366,176
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Neurosciences
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Hwang, Jee-Yeon; Zukin, R Suzanne (2018) REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol 48:193-200
Hwang, Jee-Yeon; Aromolaran, Kelly A; Zukin, R Suzanne (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 18:347-361
Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio et al. (2017) Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ 24:317-329
Tamminga, C A; Zukin, R S (2015) Schizophrenia: Evidence implicating hippocampal GluN2B protein and REST epigenetics in psychosis pathophysiology. Neuroscience 309:233-42
Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro et al. (2015) Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia. Brain Res 1621:222-30
Choi, Catherine H; Schoenfeld, Brian P; Weisz, Eliana D et al. (2015) PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J Neurosci 35:396-408
Murphy, Jessica A; Stein, Ivar S; Lau, C Geoffrey et al. (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34:869-79
Kaneko, Naoki; Hwang, Jee-Yeon; Gertner, Michael et al. (2014) Casein kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death. J Neurosci 34:6030-9
Hwang, Jee-Yeon; Kaneko, Naoki; Noh, Kyung-Min et al. (2014) The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol 426:3454-66
Hwang, Jee-Yeon; Aromolaran, Kelly A; Zukin, R Suzanne (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology 38:167-82

Showing the most recent 10 out of 27 publications