While the function of sleep remains a mystery, many of the most successful theories on sleep function, including synaptic downscaling, memory consolidation, developmental maturation, and even many theories on sleep restoration require that sleep must substantially influence aspects of brain plasticity. We demonstrate that increasing sleep restores brain functions supporting short-term memory in each of 12 classic memory mutants without specifically rescuing the causal molecular lesion or structural defect. We also demonstrate that sleep can rescue brain functions supporting long-term memory as assessed by courtship conditioning. Elucidating the underlying molecular mechanisms may shed new light on processes related to sleep function and may ultimately provide a roadmap for using sleep as a therapeutic to slow or reverse cognitive decline associated with degenerative disease and perhaps developmental disorders. Thus, in this proposal we will: 1) identify the circuits that are required to support sleep-dependent changes in adaptive behavior, 2) manipulate specific genes to determine if they are required for sleep induced restoration of memory, and 3) Determine whether the therapeutic role of sleep extends to disorders in which species of toxic proteins can actively impair neuronal functions and/or kill neurons.

Public Health Relevance

We have shown that sleep can restore plasticity to a large collection of well characterized mutants including in a Drosophila model of Alzheimer's disease. We propose to determine how sleep can benefit the brain so as to provide insights into how sleep might be used to slow or reverse cognitive decline associated with degenerative disease, psychiatric disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
He, Janet
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie et al. (2017) Oscillatory brain activity in spontaneous and induced sleep stages in flies. Nat Commun 8:1815
Dissel, Stephane; Klose, Markus; Donlea, Jeff et al. (2017) Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer's disease. Neurobiol Sleep Circadian Rhythms 2:15-26
Seugnet, Laurent; Dissel, Stephane; Thimgan, Matthew et al. (2017) Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss. Front Neural Circuits 11:79
Dissel, Stephane; Seugnet, Laurent; Thimgan, Matthew S et al. (2015) Differential activation of immune factors in neurons and glia contribute to individual differences in resilience/vulnerability to sleep disruption. Brain Behav Immun 47:75-85
Thimgan, Matthew S; Seugnet, Laurent; Turk, John et al. (2015) Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. Sleep 38:801-14
Dissel, Stephane; Melnattur, Krishna; Shaw, Paul J (2015) Sleep, Performance, and Memory in Flies. Curr Sleep Med Rep 1:47-54
Dissel, Stephane; Angadi, Veena; Kirszenblat, Leonie et al. (2015) Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 25:1270-81
Faville, R; Kottler, B; Goodhill, G J et al. (2015) How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Sci Rep 5:8454
Lucey, Brendan P; Leahy, Averi; Rosas, Regine et al. (2015) A new model to study sleep deprivation-induced seizure. Sleep 38:777-85
Thimgan, Matthew S; Toedebusch, Cristina; McLeland, Jennifer et al. (2015) Excessive daytime sleepiness is associated with changes in salivary inflammatory genes transcripts. Mediators Inflamm 2015:539627

Showing the most recent 10 out of 29 publications