The long term goal of the proposed research is to develop effective treatment for spinobulbar muscular atrophy (SBMA), a neurodegenerative disease caused by expansion of a polyglutamine (polyQ) tract in the androgen receptor (AR). My laboratory has recently published compelling evidence that native functions of the androgen receptor are essential mediators of toxicity. Specifically, we used a combination of Drosophila genetics and functional genomics to learn that interaction of the AF-2 domain of AR with nuclear hormone co-regulatory protein is an essential step in pathogenesis. This exciting finding suggests that modulation of native AR function with existing anti-androgen therapies may be effective in the treatment of this devastating neurodegenerative disease. The critical next steps are corroboration of this mechanism of pathogenesis in a mammalian model of SBMA and further elucidation of the specific AR functions that are perturbed by polyglutamine expansion, as outlined in the accompanying proposal. A related question is determination of the most important component of the motor unit to be targeted in therapy: motor neuron or muscle. Toward that end we have initiated experiments to address three specific aims. First, we have generated a novel series of transgenic mice that conditionally express wild type or mutant forms of human androgen receptor to corroborate these findings in a mammalian model. Second, we will pursue proteomic approaches to characterize how polyglutamine expansion influences native interactions of the androgen receptor. Third, we will engineer conditional expression exclusively in motor neuron or muscle to gauge the relative contributions of these tissues to the degenerative phenotype in SBMA mice.

Public Health Relevance

Mutations in the androgen receptor gene cause an inherited neurodegenerative disorder called spinobulbar muscular atrophy. This project seeks to understand the molecular basis of this disease and provide detailed characterization of a promising therapeutic target. These insights will be used to guide therapeutic intervention for this disease and related degenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS053825-11
Application #
8826184
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Gubitz, Amelie
Project Start
2005-12-01
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2017-04-30
Support Year
11
Fiscal Year
2015
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Badders, Nisha M; Korff, Ane; Miranda, Helen C et al. (2018) Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nat Med 24:427-437
Bott, Laura C; Badders, Nisha M; Chen, Ke-Lian et al. (2016) A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum Mol Genet 25:1979-1989
Alami, Nael H; Smith, Rebecca B; Carrasco, Monica A et al. (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536-543
Ramaswami, Mani; Taylor, J Paul; Parker, Roy (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727-36
Kim, Hong Joo; Kim, Nam Chul; Wang, Yong-Dong et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467-73
Lim, Kah-Leong; Ng, Xiao-Hui; Grace, Lim Gui-Yin et al. (2012) Mitochondrial dynamics and Parkinson's disease: focus on parkin. Antioxid Redox Signal 16:935-49
Nedelsky, Natalia B; Pennuto, Maria; Smith, Rebecca B et al. (2010) Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67:936-52
Lee, Joo-Yong; Nagano, Yoshito; Taylor, J Paul et al. (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671-9
Batlevi, Yakup; Martin, Damali N; Pandey, Udai Bhan et al. (2010) Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila. Proc Natl Acad Sci U S A 107:742-7
Palazzolo, Isabella; Nedelsky, Natalia B; Askew, Caitlin E et al. (2010) B2 attenuates polyglutamine-expanded androgen receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. J Neurosci Res 88:2207-16

Showing the most recent 10 out of 22 publications