This proposal accomplishes the AREA program objectives of: 1) supporting meritorious research; 2) exposing undergraduates to research; and 3) strengthening the research environment in non-research intensive universities. The goal of this project is to understand a unique mechanism of transcription elongation control originally discovered in the bacteriophage HK022. Most members of the lambda phage family use phage-encoded proteins to promote early gene expression by suppressing transcription termination. HK022 does not encode an antitermination protein but relies instead on the direct interaction of sites in the nascent transcript with RNA polymerase. The specific hypothesis is that the activity of RNA-based antiterminators depends upon the recognition of sequence and structural information in the nascent transcript by RNA polymerase. This hypothesis is based upon previous studies that 1) have shown that mutations that disrupt base pairing in the RNA reduce antitermination and secondary mutations that re-establish base pairing restore terminator read through 2) interchanging segments of antiterminator RNAs drastically affects activity, and 3) RNA-mediated antitermination is blocked by mutations in the beta prime subunit of E. coli RNA polymerase. The goal of this proposal is to identify the required sequence and structural elements of RNA based antiterminators.
The specific aims are: 1) to identify additional examples of antiterminator RNAs in lambdoid phages; 2) to use in vivo, in vitro and in silico approaches to determine the structurally and functionally important features of the newly identified antiterminator RNAs; and 3) to complete the annotation of two new phage genomes that possess RNA-based antiterminators. The antiterminator sequences discovered in HK022 provide unique examples of RNAs that control gene expression by directly modifying the transcription apparatus. Unusual modes of gene regulation are potential targets for drug design. Therefore, a better understanding of antiterminator RNAs and their recognition by RNA polymerase may facilitate the discovery or development of therapeutic agents capable of altering the expression of virulence genes and thus attenuating disease processes. Western Kentucky University aspires to be the best comprehensive public institution in Kentucky and among the best in the nation. This project supports this mission and will enhance the research environment at Western by providing undergraduate students with numerous opportunities to learn the fundamentals of biomedical research while exploring a unique mechanism of gene expression control. The antiterminator sequences discovered in phage HK022 provide unique examples of RNAs that control gene expression by directly modifying the transcription apparatus. Unusual modes of gene regulation are potential targets for drug design. Therefore, a better understanding of antiterminator RNAs and their recognition by RNA polymerase may facilitate the discovery or development of therapeutic agents capable of altering the expression of virulence genes and thus attenuating disease processes. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15GM079694-01
Application #
7192384
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Tompkins, Laurie
Project Start
2007-02-01
Project End
2011-01-31
Budget Start
2007-02-01
Budget End
2011-01-31
Support Year
1
Fiscal Year
2007
Total Cost
$204,750
Indirect Cost
Name
Western Kentucky University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
077876258
City
Bowling Green
State
KY
Country
United States
Zip Code
42101
King, Rodney A; Wright, Alice; Miles, Courtney et al. (2011) Newly discovered antiterminator RNAs in bacteriophage. J Bacteriol 193:5784-92