Recurrent urinary tract infections (rUTI) are among the most common bacterial infections, causing an estimated 268,000 cases in the US alone. Bacteria such as the uropathogenic Escherichia coli (UPEC) follow a multistep, pathogenic cycle in which intracellular bacterial communities (biofilms) are established within the urothelium during infection. The opportunistic pathogen Pseudomonas aeruginosa also forms highly resistant biofilms and infects chronically-catheterized patients. The inability of current prophylactic antibiotic regimens to access the long-lived intracellular bacterial reservoirs within the urothelium renders antibiotics inefficient while contributing to resistance. We propose a novel approach to treat rUTI in which targeted nanogels with high loading of multiple antibiotics can be delivered transurethrally to the bladder wall. We recently published results in which it was demonstrated that the cell penetrating peptide CGCKRK, when covalently conjugated on the surface of a biocompatible acrylic nanogel, can efficiently bind and penetrate the denuded/injured murine bladder wall in-vivo and successfully deliver a drug mimic within the murine urothelium. Based on the in vitro and in vivo preliminary data gathered, we have detailed a project plan in which nanogel networks that penetrate the urothelium to enable the sustained delivery of antibiotics to successfully treat rUTIs will be engineered. We will expand on our preliminary methods by 1) synthesizing nanogels with enhanced capacity to encapsulate and release therapeutically relevant doses of antibiotics (ciprofloxacin and gentamicin) in physiologically relevant timescales and tested in vitro and; 2) establish the conditions to successfully treat rUTI in an in-vivo murine infection model. Additional potential of the targeted bladder delivery systems described in this proposal is the ability to simultaneously deliver multiple therapeutics, such as a single antibiotic, an antibiotic cocktail or a biofilm dispersing molecule. The development of a bladder delivery system described here could also be used to advance treatments of other urinary bladder pathologies.

Public Health Relevance

Urinary Tract Infections (UTIs) are the most common bacterial infection in women and accounts for more than 100,000 hospital admissions annually. As 80% of UTI develop into recurrent infections (rUTI) within 3 months, even while treated with prophylactic antibiotics, it has been proposed that the causative pathogens such as uropathogenic Escherichia coli (UPEC) and Pseudomonas aeruginosa form highly resistant and intracellular biofilms that contribute to the recurrent nature of the infection. In the approach described in this proposal, targeted, cell-penetrating nanogels tailored to deliver antibiotics within the urothelium will be developed, thereby addressing will an unmet need within rUTI therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI154360-01
Application #
10047676
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Xu, Zuoyu
Project Start
2020-06-08
Project End
2022-05-31
Budget Start
2020-06-08
Budget End
2021-05-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045