There is a significant need to improve global access to cervical cancer screening. Globally, approximately 570,000 women are diagnosed with and 311,000 women die from cervical cancer each year. Nearly 90 percent of cervical cancer deaths occur in low- and middle-income countries (LMICs), due mainly to challenges in implementing effective screening programs. Likewise, cervical cancer rates in medically underserved areas in the US remain high. For example, in the Rio Grande Valley of Texas, cervical cancer incidence rates are 55% higher than the US average, and approximately 10% of eligible women are screened. There is broad consensus that high-risk human papillomavirus (hrHPV) testing is the best approach to improve global screening efforts. An HPV biomarker that provides excellent sensitivity and better specificity than DNA is hrHPV mRNA. However, currently available hrHPV mRNA testing remains too complex and costly (e.g. >$45,000 for equipment and roughly $74 per test) for effective implementation into low-resource and medically underserved settings. Advances in isothermal amplification and lateral flow detection offer an opportunity to develop a point-of-care (POC) hrHPV mRNA test that is accurate, affordable, and can be performed in low-resource settings. The goal of this proposal is to combine isothermal amplification and lateral flow detection within an integrated point-of- care device to dramatically lower the cost of hrHPV mRNA testing. We will develop a low-cost, POC hrHPV E7 mRNA test that requires minimal laboratory equipment and performs as well as commercial RNA tests. Isothermal amplification reduces the instrumentation cost and complexity typically associated with nucleic acid amplification requiring only a single-temperature heater. Lateral flow detection integrates sample manipulation processes and wicks all detection reagents past pre-defined test zones, producing a simple, colorimetric readout. Our proposed proof-of-concept test will detect HPV types 16 and 18, the two types responsible for 70% of cervical cancer, and we estimate will cost <$3 per test in low-volume production. Consistent with the exploratory/developmental goals of an R21 proposal, we aim to (1) design and optimize HPV 16 and 18 E7 mRNA amplification assays and lateral flow detection; (2) combine mRNA amplification and detection into a single POC device; (3) evaluate performance of the developed mRNA test using synthetic and clinical samples. We will leverage the expertise of our interdisciplinary team, which includes designing technologies for LMICs, cervical cancer care, HPV diagnostics, and epidemiology, to develop, validate, and translate this novel screening test. We intend to build from this proof-of-concept test to incorporate HPV mRNA detection for types 31,33, 35, 45, 52, and 58 in the future to achieve detection of the HPV types that cause >90% of cervical cancer. Collectively, this research will lead to the development and implementation of a scalable, cost- effective screening test, a critical and necessary step toward the global elimination of cervical cancer.

Public Health Relevance

Cervical cancer ranks fourth in both incidence and mortality among women globally; in low- and middle-income countries (LMICs), cervical cancer remains the second most common cancer among women. Over 90% of cervical cancer deaths occur in LMICs, where access to HPV vaccination, early screening, accurate diagnosis, and treatment of precancer remain low. Implementing high-performance screening and prevention for cervical cancer is a major challenge in low-resource settings; thus, there is a global need to develop low-cost, accurate tests to improve cervical cancer screening and early detection.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA249367-01A1
Application #
10119532
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Zhu, Claire
Project Start
2021-02-01
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Rice University
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
050299031
City
Houston
State
TX
Country
United States
Zip Code
77005