The goal of the Mayo Clinic College of Medicine (Mayo) Initiative for Maximizing Student Development (IMSD) is to prepare underrepresented (UR) pre-doctoral students to become future national leaders in disease-related basic and translational research and education. Our approach is to enhance the self-identification of talented UR pre-doctoral students toward medically relevant research careers, and to increase the numbers of these students entering and persisting in these careers. The Mayo IMSD is distinguished by its long and successful track record, Mayo's outstanding basic science research training environment, and Mayo's reputation as a national health-care leader. The Mayo IMSD addresses the stated needs of UR pre-doctoral students to appreciate how basic science research translates into improved health. Mayo IMSD program leaders continuously assess the Mayo Clinic research training environment, including Mayo Graduate School student and faculty demographics, UR and non-UR student PhD completion rates, and outcomes in competitive postdoctoral training productive research careers. Challenges and impediments to PhD degree completion at Mayo Graduate School are analyzed. As a result of our past experience training IMSD students and our comprehensive assessment, the Mayo IMSD proposes renewed funding to achieve the following three specific aims:
Aim 1 : Recruit and matriculate new UR PhD students for each of 5 years (alternating 5 and 4 new students per year in grant years 17-21) to participate in IMSD for the first 2 years of their PhD program. Achievement of this aim will ensure that UR students will comprise 15-20% of each incoming Mayo Graduate School class.
Aim 2 : Facilitate the research career success and productivity of IMSD students through a proven enrichment curriculum emphasizing professional writing and presentation skills, intensive career and academic counseling, and social support. In parallel, preparation for future leadership careers will be supported by student achievement of specific milestones.
Aim 3 : Continue to assess and continuously improve the Mayo IMSD program through internal mechanisms, intense tracking of participants for at least 10 years, and professional program evaluation. Aggressive goals have been set deliberately. The culture of the Mayo IMSD is to encourage trainees to aim high in developing skills and accomplishments for later career success. IMSD trainees will graduate with PhD degrees, but will also understand and achieve concrete academic and career development metrics. In this way, the Mayo IMSD will facilitate acquisition of skills and accomplishments necessary for persistence of trainees to careers as leaders in research and education.

Public Health Relevance

This research education program will provide 2 years of support and professional skills development for underrepresented PhD students. The goal is to help students from diverse backgrounds (e.g. ethnic/racial minorities, individuals with disabilities, and individuals from disadvantaged backgrounds) to advance to successful biomedical research careers at the PhD level thus contributing to the diversification of the biomedical research workforce.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Education Projects (R25)
Project #
5R25GM055252-21
Application #
9230388
Study Section
Minority Programs Review Subcommittee A (MPRC-A)
Program Officer
Koduri, Sailaja
Project Start
1996-09-30
Project End
2018-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
21
Fiscal Year
2017
Total Cost
$344,433
Indirect Cost
$18,918
Name
Mayo Clinic, Rochester
Department
Type
Other Domestic Non-Profits
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Perez, Kimberly; Patel, Robin (2018) Survival of Staphylococcus epidermidis in Fibroblasts and Osteoblasts. Infect Immun :
Nguyen, Tien V; Anguiano-Zarate, Stephanie S; Matchett, William E et al. (2018) Retargeted and detargeted adenovirus for gene delivery to the muscle. Virology 514:118-123
Oliveros, Alfredo; Starski, Phillip; Lindberg, Daniel et al. (2017) Label-Free Neuroproteomics of the Hippocampal-Accumbal Circuit Reveals Deficits in Neurotransmitter and Neuropeptide Signaling in Mice Lacking Ethanol-Sensitive Adenosine Transporter. J Proteome Res 16:1445-1459
Bradley, E W; Carpio, L R; McGee-Lawrence, M E et al. (2016) Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis Cartilage 24:1021-8
Nguyen, Tien V; Heller, Greg J; Barry, Mary E et al. (2016) Evaluation of polymer shielding for adenovirus serotype 6 (Ad6) for systemic virotherapy against human prostate cancers. Mol Ther Oncolytics 3:
Cumba Garcia, Luz M; Huseby Kelcher, April M; Malo, Courtney S et al. (2016) Superior isolation of antigen-specific brain infiltrating T cells using manual homogenization technique. J Immunol Methods 439:23-28
Comba, Andrea; Almada, Luciana L; Tolosa, Ezequiel J et al. (2016) Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid. J Biol Chem 291:1933-47
Perez, Kimberly; Patel, Robin (2015) Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J Infect Dis 212:335-6
Singh, Brajesh K; Hornick, Andrew L; Krishnamurthy, Sateesh et al. (2015) The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. J Virol 89:7089-96
Bradley, Elizabeth W; Carpio, Lomeli R; Olson, Eric N et al. (2015) Histone deacetylase 7 (Hdac7) suppresses chondrocyte proliferation and ?-catenin activity during endochondral ossification. J Biol Chem 290:118-26

Showing the most recent 10 out of 40 publications