The goals of our IMSD program are to increase significantly the number of minority students who achieve the Ph.D. degree and to train students for careers in the sciences, as teachers, researchers in universities and the biotechnology industry or as health care professionals. Both graduate and undergraduate students participate in our program. We have three specific objectives. First, we have outlined a long-term plan to nearly double the number of IMSD participants who earn the Ph.D. Under the previous MBRS program we produced 20 Ph.D.s in the period 1988-1997. Our IMSD program began in 1998. We have set a target 36 Ph.D.s for the period 1998-2007. To meet that objective we propose to produce 14-15 Ph.D.s in the next four years. The second objective is to have a 95% graduation rate for all undergraduate participants. Furthermore we want to maintain our record of placing 95% of our graduates in graduate schools, professional Schools or in jobs in which they use their biology and chemistry training. The third objective is to increase the number of minority students who publish in journals and who make presentations at national scientific meetings. We wish to increase the number of papers and published abstracts by 40%. We propose to support 8 Ph.D. students and 15 undergraduates. The major elements of our program are: a) early outreach to students in their first and second year; b) selection of research students at the beginning of the third year; c) a novel summer training course; d) undergraduate research positions in faculty labs; e) the graduate program; f) a monthly student research seminar; and g) the program support office.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Education Projects (R25)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-MBRS-9 (SD))
Program Officer
Singh, Shiva P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Santa Cruz
Schools of Arts and Sciences
Santa Cruz
United States
Zip Code
Bohr, Tisha; Nelson, Christian R; Giacopazzi, Stefani et al. (2018) Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 28:3199-3211.e3
Asojo, Oluwatoyin A; Darwiche, Rabih; Gebremedhin, Selam et al. (2018) Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 48:359-369
Bogdanoff, Walter A; Perez, Edmundo I; López, Tomás et al. (2018) Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design. J Virol 92:
Alcaide-Gavilán, Maria; Lucena, Rafael; Schubert, Katherine A et al. (2018) Modulation of TORC2 Signaling by a Conserved Lkb1 Signaling Axis in Budding Yeast. Genetics 210:155-170
Volden, Roger; Palmer, Theron; Byrne, Ashley et al. (2018) Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci U S A 115:9726-9731
Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet et al. (2017) Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose. Org Biomol Chem 15:9727-9733
Chakraborty, Indranil; Jimenez, Jorge; Sameera, W M C et al. (2017) Luminescent Re(I) Carbonyl Complexes as Trackable PhotoCORMs for CO delivery to Cellular Targets. Inorg Chem 56:2863-2873
Jimenez, Jorge; Chakraborty, Indranil; Del Cid, Anthony M et al. (2017) Five- and Six-Coordinated Silver(I) Complexes Derived from 2,6-(Pyridyl)iminodiadamantanes: Sustained Release of Bioactive Silver toward Bacterial Eradication. Inorg Chem 56:4784-4787
Byrne, Ashley; Beaudin, Anna E; Olsen, Hugh E et al. (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027
Knutson, Andrew Kek?pa'a; Egelhofer, Thea; Rechtsteiner, Andreas et al. (2017) Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult Caenorhabditis elegans Germline. Genetics 206:163-178

Showing the most recent 10 out of 120 publications