UCLA Neurosurgery Research Education Program SUMMARY/ABSTRACT The fundamental goal of the UCLA Neurosurgery Research Education Program is to train neurosurgery residents in basic, translational, or clinical science research through direct investigative study, oral/written scientific presentation, and intensive mentored career development. The structure of the training program incorporates two tiers of mentoring, with a culmination in the production of career development grant application (K-award) in the final year of the residency for each trainee. This training program is supported by an excellent institutional environment for neuroscience research and education in the UCLA Departments of Neurosurgery, Neuropathology, and Neuroradiology, as well as newly formed UCLA Neuroscience Theme Area. We have had long-standing, strong collaborations with faculty members within the Department of Neurology?s research education program. The UCLA Department of Neurosurgery has consistently been in the top 5 NIH-funded neurosurgery departments in the nation, and has a significant depth and breadth of clinical, translational, and basic research faculty with diverse and well-funded subspecialty programs. The residency program has a strong track record of training many academic neurosurgeons over the past 25 years. Our Neurosurgery Research Education Program leverages our past educational experiences and the strong Neuroscience community at UCLA in order to provide a distinct research training track specifically for neurosurgery residents and fellows who are inclined to pursue academic careers as independent researchers, with the overall long-term goal to ensure that highly trained neurosurgeon-scientists will be available to make future advances that will lead to a reduction in the burden of neurological diseases.

Public Health Relevance

UCLA Neurosurgery Research Education Program PROJECT NARRATIVE There is a critical need for additional well-trained neurosurgeon-scientists to conduct basic, clinical, and translational research that could potentially lead to the treatment and cure of neurological disorders. The immediate goal of the UCLA Neurosurgery Research Education Program is to train neurosurgery residents/fellows in basic, translational, or clinical science research, so as to foster their academic success and development into independent physician-scientists who can further our understanding of the mechanisms, etiology, and treatment of neurological diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Education Projects (R25)
Project #
5R25NS079198-09
Application #
9973233
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Korn, Stephen J
Project Start
2012-04-01
Project End
2022-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Malekmohammadi, Mahsa; Shahriari, Yalda; AuYong, Nicholas et al. (2018) Pallidal stimulation in Parkinson disease differentially modulates local and network ? activity. J Neural Eng 15:056016
Malekmohammadi, Mahsa; AuYong, Nicholas; Ricks-Oddie, Joni et al. (2018) Pallidal deep brain stimulation modulates excessive cortical high ? phase amplitude coupling in Parkinson disease. Brain Stimul 11:607-617
AuYong, Nicholas; Malekmohammadi, Mahsa; Ricks-Oddie, Joni et al. (2018) Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease. Front Hum Neurosci 12:270
Antonios, Joseph P; Soto, Horacio; Everson, Richard G et al. (2017) Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A 114:10220-10225
Antonios, Joseph P; Soto, Horacio; Everson, Richard G et al. (2017) Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 19:796-807
Niu, Tianyi; Lu, Derek S; Yew, Andrew et al. (2016) Postoperative Cerebrospinal Fluid Leak Rates with Subfascial Epidural Drain Placement after Intentional Durotomy in Spine Surgery. Global Spine J 6:780-785
Laks, Dan R; Crisman, Thomas J; Shih, Michelle Y S et al. (2016) Large-scale assessment of the gliomasphere model system. Neuro Oncol 18:1367-78
Ramaswamy, Vijay; Hielscher, Thomas; Mack, Stephen C et al. (2016) Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. J Clin Oncol 34:2468-77
Antonios, Joseph P; Soto, Horacio; Everson, Richard G et al. (2016) PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight 1:
Everson, Richard G; Antonios, Joseph P; Lisiero, Dominique N et al. (2016) Efficacy of systemic adoptive transfer immunotherapy targeting NY-ESO-1 for glioblastoma. Neuro Oncol 18:368-78

Showing the most recent 10 out of 31 publications