The overall objectives of this research proposal are the further development of a multidisciplinary program for studying the biochemical mechanism of action of, and the molecular basis of resistance to, antitumor drugs. The ultimate goal is to use the knowledge acquired in these studies to: 1) develop taxol analogs that will maintain or improve the therapeutic activity of the drug and be amenable to production in concentrations required for clinical studies and 2) design therapeutic protocols to avoid and circumvent drug resistance. The specific objectives of this research proposal are to: 1) understand the molecular mechanisms by which cells become resistant to taxol. Taxol-resistant cells isolated in the laboratory will be analyzed for the presence of P-glycoprotein and altered forms of tubulin. Cell lines grown in the presence of taxol and cis-platinum will be isolated and analyzed for drug resistance. 2) prepare antibodies to taxol that can be used for a) visualizing the drug in normal and tumor cells by immunofluorescence and on the microtubule by immunoelectron microscopy utilizing gold spheres, b) developing an radioimmune assay (RIA) for the quantitation of taxol in body fluids and tissues, and in crude extracts of plants, and c) domain mapping of the taxol binding site in the microtubule. 3) determine the drug binding site(s) on the microtubule by using photoaffinity labeled radioactive taxol analogs that will covalently bind to the microtubule. Isolation and analysis of a peptide(s) containing the radiolabeled taxol analog should provide the amino acid sequence with which taxol interacts. This information, taken together with the known structural features of taxol that are required for binding, plus what is known about the tertiary structure of tubulin, should produce, at least a partial definition of the binding site for taxol on the microtubule. 4) further define the structure-activity profile of taxol with specific emphasis on the A-ring side chain. Such information will provide insight into the chemical features of taxol that are important in its interaction with microtubules and allow the design of new therapeutic analogues.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Unknown (R35)
Project #
Application #
Study Section
Special Emphasis Panel (SRC (88))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
Schools of Medicine
United States
Zip Code
Mani, S; McDaid, H M; Grossman, A et al. (2007) Peripheral blood mononuclear and tumor cell pharmacodynamics of the novel epothilone B analogue, ixabepilone. Ann Oncol 18:190-5
Ikui, Amy E; Yang, Chia-Ping Huang; Matsumoto, Tomohiro et al. (2005) Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle 4:1385-8
Mani, Sridhar; Huang, Haiyan; Sundarababu, Sumathy et al. (2005) Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin Cancer Res 11:6359-69
Klein, Laura E; Freeze, B Scott; Smith 3rd, Amos B et al. (2005) The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle 4:501-7
Geney, Raphael; Sun, Liang; Pera, Paula et al. (2005) Use of the tubulin bound paclitaxel conformation for structure-based rational drug design. Chem Biol 12:339-48
Mani, Sridhar; McDaid, Hayley; Hamilton, Anne et al. (2004) Phase I clinical and pharmacokinetic study of BMS-247550, a novel derivative of epothilone B, in solid tumors. Clin Cancer Res 10:1289-98
Verdier-Pinard, Pascal; Wang, Fang; Martello, Laura et al. (2003) Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42:5349-57
Martello, Laura A; Verdier-Pinard, Pascal; Shen, Heng-Jia et al. (2003) Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res 63:1207-13
Orr, George A; Verdier-Pinard, Pascal; McDaid, Hayley et al. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22:7280-95
Goel, S; Bulgaru, A; Hochster, H et al. (2003) Phase I clinical study of infusional 5-fluorouracil with oxaliplatin and gemcitabine (FOG regimen) in patients with solid tumors. Ann Oncol 14:1682-7

Showing the most recent 10 out of 76 publications