The overall objective of the proposed research is to characterize viral and cellular popuations in the lymphatic tissue (LT) niche to better understand HIV pathogenesis and improve treatment based on that knowledge. The proposed research continues to focus on the roles of infected resting and activated CD4+ T cells in the transmission, propagation and persistence of infection and the generation of latently infected cells that cannot be eradicated by current treatment. Additionally, the role and mechanism by which fibrosis impairs the ability of the LT niche to sustain and reconstitute CD4+ T cell populations will be investigated. In situ hybridization and PCR, histochemical and immunohistochemical staining, a new method to visualize virion production in tissues and quantitative image analysis will be used to characterize virus production by resting and activated T cells; relationship of infection of these cells and macrophages to their population densities in LTs; relationship of minimally productively infected cells to emergence of latently infected cells; and relationship of collagen in LTs to restoration of CD4+ T cell populations with treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI028246-19
Application #
7208014
Study Section
Special Emphasis Panel (NSS)
Program Officer
Sharma, Opendra K
Project Start
1999-03-01
Project End
2009-02-28
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
19
Fiscal Year
2007
Total Cost
$377,285
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Estes, Jacob D; Reilly, Cavan; Trubey, Charles M et al. (2015) Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J Infect Dis 211:744-54
Zeng, Ming; Paiardini, Mirko; Engram, Jessica C et al. (2012) Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood 120:1856-67
Zeng, Ming; Haase, Ashley T; Schacker, Timothy W (2012) Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol 33:306-14
Zeng, Ming; Haase, Ashley T (2012) Ex vivo Co-culture of Lymphoid Tissue Stromal Cells and T Cells. Bio Protoc 2:
Zeng, Ming; Southern, Peter J; Reilly, Cavan S et al. (2012) Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog 8:e1002437
Zeng, Ming; Smith, Anthony J; Wietgrefe, Stephen W et al. (2011) Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest 121:998-1008
Schacker, Timothy W; Bosch, Ronald J; Bennett, Kara et al. (2010) Measurement of naive CD4 cells reliably predicts potential for immune reconstitution in HIV. J Acquir Immune Defic Syndr 54:59-62
Estes, Jacob D; Haase, Ashley T; Schacker, Timothy W (2008) The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol 20:181-6
Estes, Jacob; Baker, Jason V; Brenchley, Jason M et al. (2008) Collagen deposition limits immune reconstitution in the gut. J Infect Dis 198:456-64
Denton, Paul W; Estes, Jacob D; Sun, Zhifeng et al. (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5:e16

Showing the most recent 10 out of 32 publications