Lymphotoxin(LT)-alphabeta LIGHT cytokine systems have emerged as critical factors regulating the development and effector functions of innate and adaptive immune systems. This project period is focused on the actions of LIGHT and LTalphabeta as regulators of lymphocyte activation and survival. Beyond the recognized role of LTalphabeta in lymphoid organogenesis, new results indicate that LTalphabeta and LIGHT are essential for survival of T and B lymphocytes in response to a viral pathogen. Constitutive expression of LIGHT as a transgene in T cells leads to a profound cell-mediated, intestinal inflammatory disease, but with lymphoid abnormalities. Further, LIGHT is a candidate susceptibility locus for inflammatory bowel disease in humans providing strong circumstantial evidence linking these cytokines to a human autoimmune disease. Additionally, ligation of HVEM leads to negative regulation of T cell responses that can override CD28 costimulation.
Three specific aims are proposed to elucidate their roles in T cell activation and survival.
The first aim develops a transferable model of intestinal inflammation by expression of LIGHT in splenic T cells via a feline immunodeficiency virus (FIV; lentivirus) vector. T cells are adoptively transferred into HVEM-/- and LTbetaR-/- mice to determine the receptor basis of the inflammatory phenotype. The functionality of the distinct physical forms of LIGHT will be examined with this FIV model. The regulatory elements and mutations/polymorphisms that control human LIGHT gene expression and protein function will be defined using bioinformatic and molecular genetic approaches. Monoclonal Abs to mouse HVEM and LTbetaR were developed that function as immune modulators.
The second aim focuses on the use of these antibodies to directly probe the functions of HVEM in physiological settings, including the 5CC7 TCR-Tg mice and the CD4+CD45Rb(hi) adoptive transfer model of inflammatory mucosal disease. Finally, the signaling pathways induced by HVEM will be investigated using biochemical and genetic systems to elucidate the mechanism of negative signaling in T cells. The specific effector molecules induced by LTbetaR and HVEM signaling pathways, identified by their functional properties or through DNA array analysis, will be tested using virus infection and LIGHT-induced intestinal inflammation models. Together these aims will provide new insight into the physiologic role of the LTalphabeta and LIGHT cytokine systems in cell-mediated inflammatory reactions and pathogenesis of human autoimmune disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
2R37AI033068-11
Application #
6646094
Study Section
Special Emphasis Panel (ZRG1-SSS-F (01))
Program Officer
Nasseri, M Faraz
Project Start
1994-08-01
Project End
2007-12-31
Budget Start
2003-07-01
Budget End
2003-12-31
Support Year
11
Fiscal Year
2003
Total Cost
$208,125
Indirect Cost
Name
La Jolla Institute
Department
Type
DUNS #
603880287
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Ward-Kavanagh, Lindsay K; Lin, Wai Wai; Šedý, John R et al. (2016) The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 44:1005-19
Scarzello, Anthony J; Jiang, Qun; Back, Timothy et al. (2016) LT?R signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 65:1765-75
Šedý, John; Bekiaris, Vasileios; Ware, Carl F (2015) Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb Perspect Biol 7:a016279
Gommerman, Jennifer L; Browning, Jeffrey L; Ware, Carl F (2014) The Lymphotoxin Network: orchestrating a type I interferon response to optimize adaptive immunity. Cytokine Growth Factor Rev 25:139-45
Allen, Sariah J; Rhode-Kurnow, Antje; Mott, Kevin R et al. (2014) Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency. J Virol 88:1961-71
Steinberg, Marcos W; Huang, Yujun; Wang-Zhu, Yiran et al. (2013) BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection. PLoS One 8:e77992
Smith, Wendell; Tomasec, Peter; Aicheler, Rebecca et al. (2013) Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe 13:324-35
Ware, Carl F (2013) Protein therapeutics targeted at the TNF superfamily. Adv Pharmacol 66:51-80
Šedý, John R; Bjordahl, Ryan L; Bekiaris, Vasileios et al. (2013) CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J Immunol 191:828-36
Bekiaris, Vasileios; Šedý, John R; Macauley, Matthew G et al. (2013) The inhibitory receptor BTLA controls ?? T cell homeostasis and inflammatory responses. Immunity 39:1082-1094

Showing the most recent 10 out of 82 publications