The overall goal of the proposed studies remains to understand the mechanisms of ischemic kidney cell injury and repair with a long range goal to establish therapies that will be useful to prevent and treat acute kidney injury (AKI) in man. Over the last support period we have established that surviving proximal tubule cells (PTCs) are responsible for replacement of injury-induced lost epithelial cells with no evidence that a specialized progenitor/stem cell population replaces the PTCs. In maladaptive pro-fibrotic repair the proximal tubule does not directly convert to interstitial fibroblasts but rather assumes a pro-inflammatory secretory phenotype associated with cell cycle G2/M arrest. Furthermore primary damage to the PT using transgenic animals expressing the human diphtheria toxin receptor leads to inflammation, fibrosis, vascular rarefaction and glomerulosclerosis. We have also conducted definitive studies in the rat that led the FDA, EMA and Japanese regulatory agency to qualify Kim-1 (which we discovered) for preclinical evaluation of nephrotoxicity. The current proposal links acute kidney injury to chronic kidney disease by it focus on the determinants that regulate movement through G2/M after acute injury and result in maladaptive repair leading to fibrosis. When progression through the cell cycle is arrested, particularly in the G2 phase of the G2/M transition, the resulting senescent phenotype leads to secretion of profibrotic and inflammatory factors that confer enhanced sensitivity to repeated injury and ultimately chronic fibrosis. In the first Specific Aim we will define the roles of ATM and ATR in abnormal repair with cell cycle arrest, persistence of dedifferentiation and potentiation of inflammation and fibrosis after acute tubular injury. We will determine the temporal characteristics of ATM/ATR activation and their downstream effectors (including cyclin D1, ELF4/MEF, CHK1, CHK2, p53 and gH2AX) and relate these findings to the differentiation status of the PTC. We will evaluate the effects of targeted genetic deletion of ATM or ATR in the kidney tubule on cell cycle arrest and the fibrotic consequences of severe ischemia/reperfusion injury, aristolochic acid nephrotoxicity and focal proximal tubule cell necrosis induced by diphtheria toxin. In the second Specific Aim we will define the role of sirtuin T2 (SIRT2) in the response to injury and to relate SIRT2 expression and activity to G2/M transition control and the profibrotic secretory phenotype. SirT2 regulates the transition from G2 to M and we propose that upregulation, which we have observed with injury, leads to prolonged residence in G2, less apoptosis and a profibrotic secretory phenotype. In the third Specific Aim we will determine whether increased autophagy and TOR-autophagy spatial coupling compartment (TASCC) formation are important features of the profibrotic secretory phenotype that is associated with G2/M arrest after kidney injury. We will explore a potential synergy between autophagy, SIRT2, and cell cycle arrest-associated secretion. This work will hopefully identify new targets for enhancing adaptive repair and inhibiting pro-fibrotic repair.

Public Health Relevance

The work proposed in this application is designed to understand how injury to the kidney results in abnormal repair leading to long term kidney dysfunction and ultimately failure of the organ to support life. Approximately 9% of the developed world's adult population has chronic kidney disease and there are currently no effective therapies to prevent progression of the disease once it is established. Our work is designed to better understand the factors in the kidney that are responsible for progressive disease so that we can develop new therapies to prevent the progression and the side effects of kidney disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Hoshizaki, Deborah K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Chappell, Jill C; Kellie Turner, P; Anne Pak, Y et al. (2018) Abemaciclib inhibits renal tubular secretion without changing glomerular filtration rate. Clin Pharmacol Ther :
Nowak, Natalia; Skupien, Jan; Smiles, Adam M et al. (2018) Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int 93:1198-1206
Ismail, Ola Z; Sriranganathan, Saranga; Zhang, Xizhong et al. (2018) Tctex-1, a novel interaction partner of Kidney Injury Molecule-1, is required for efferocytosis. J Cell Physiol 233:6877-6895
Gupta, Navin; Susa, Koichiro; Yoda, Yoko et al. (2018) CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells. Curr Protoc Stem Cell Biol 45:e50
Lei, Chong; Berra, Lorenzo; Rezoagli, Emanuele et al. (2018) Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am J Respir Crit Care Med 198:1279-1287
Zuk, Anna; Palevsky, Paul M; Fried, Linda et al. (2018) Overcoming Translational Barriers in Acute Kidney Injury: A Report from an NIDDK Workshop. Clin J Am Soc Nephrol 13:1113-1123
Yu, Samuel Mon-Wei; Bonventre, Joseph V (2018) Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 25:166-180
Lemos, Dario R; McMurdo, Michael; Karaca, Gamze et al. (2018) Interleukin-1? Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. J Am Soc Nephrol 29:1690-1705
Song, Chi Young; Khan, Nayaab S; Liao, Francesca-Fang et al. (2018) Brain Cytosolic Phospholipase A2? Mediates Angiotensin II-Induced Hypertension and Reactive Oxygen Species Production in Male Mice. Am J Hypertens 31:622-629
Humanes, Blanca; Camaño, Sonia; Lara, Jose Manuel et al. (2017) Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol Dial Transplant 32:1645-1655

Showing the most recent 10 out of 270 publications